12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016

Metrological Aspects of the State Pharmacopoeia of Ukraine Reference Standards Establishment

Dmytro Leontiev, D.Sc., Head of Department¹ Natalia Volovyk, Ph.D., Deputy Head of Department¹ Oleksandr Gryzodub, D.Sc., Chief Scientific Officer²

Ukrainian Scientific Pharmacopoeial Centre for Quality of Medicines

¹ – Department of Validation and Reference Standards

² – Department of the State Pharmacopoeia of Ukraine

leontiev@phukr.kharkov.ua

Basis for the Pharmaceutical Reference Standards Establishment

Reference standards must be established taking into account that the risk of making a wrong decision about the quality of medicines should be acceptably low.

The uncertainty of RS assigned value (U_{RS}) is an integral characteristic of the quality of reference standards that allows evaluating the risk.

The requirement for U_{RS} depends on the target uncertainty of a measurement result (U_{Tarael}) .

The requirement for U_{Taraet} is set considering the specifications for medicines.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016

Basis for the Pharmaceutical Reference Standards Establishment

Consequently,

If we know standardization rules for the whole chain – beginning with the specification and ending with U_{RS} – we can define what the fitness for use of RS is.

Most of the specifications for medicines are expressed as intervals.

As requirements for the uncertainty are associated with the specifications, further the term *uncertainty* refers to the *expanded uncertainty*.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016 D. Leontiev , N. Volovyk, O. Gryzodub – Metrological Aspects of the SPU Reference Standards Establishment 3

Pharmacopoeial decision-making rule for specifications compliance

Requirements for the uncertainty of a measurement result (and for its sources of uncertainty) largely depend on the decision-making rule for compliance with specifications.

Although decision-making rules may vary, there is

the only specific approach used by Ph. Int., USP, Ph.Eur.:

Specification limits for Assay include analytical variability;

A decision about compliance with specifications should be made only on the basis of whether the measurement result lies within the specification range or not.

Note: It is reasonable to use this approach not only for Assay but also for other pharmaceutical tests.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016

Pharmacopoeial decision-making rule for specifications compliance

In terms of the uncertainty concept, a reliable conclusion about quality of medicines can be made if:

- ✓ U_{Target} established for measurement results, compared to specifications, is small enough to provide a reliable conclusion about quality of medicines;
- ✓ U_{Target} is generally accepted by all parties industry, regulators, and consumers.

 U_{Target} determines metrological requirements for all components of the analytical system:

- ✓ Analytical procedure (validation criteria);
- ✓ Laboratory equipment (criteria for equipment qualification);
- Establishment of reference standards;
- ✓ Others.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016 D. Leontiev , N. Volovyk, O. Gryzodub – Metrological Aspects of the SPU Reference Standards Establishment 5

Recommendations for the target uncertainty of a measurement result (U_{Target})

TEST	RECOMMENDATIONS	STATUS
ASSAY (two-sided specification limits)	$U_{Target} = B_{Upper} - 100 \%$	Ph. Eur.
for some APIs ¹ :	$U_{Target} = 100 \% - B_{Lower}$	USP ²
for Finished Drug Products (FDPs)	$U_{Target} = 0.32 \times (B_{Upper} - B_{Lower})/2$	SPU
(for limits symmetrical around 100 %):	$U_{Target} = 0.33 \times (B_{Upper} - B_{Lower})/2$	USP ²
ASSAY (one-sided specification limits) for APIs and FDPs (typically for Herbals):	U _{Target} = 6.4 %	SPU
UNIFORMITY of DOSAGE UNITS, DISSOLUTION:	U _{Target} = 3 %	SPU
RELATED SUBSTANCES Limit tests: Quantitative tests:	$U_{Target} = 16\%$	SPU SPU

¹ – in the case when an assigned limit is caused only by analytical variability

² – <1200> Requirements for Compendial Validation / Pharmacopeial Forum 39(6), <u>http://www.usp.org</u> **B**_{Lower} – the lower content limit, **B**_{Upper} – the upper content limit, **SPU** – the State Pharmacopoeia of Ukraine

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016

Interrelation between U_{RS} and U_{Target}

ISO guides do not indicate that U_{RS} must be insignificant in relation to U_{target} .

If U_{RS} is significant compared to U_{Target} , in the case when a lot of RS is replaced by a new one, the risk of making an opposite conclusion about quality of the same medicine becomes unacceptably high.

Conclusion:

In terms of the Pharmacopoeial decision-making rule, *U_{RS}* must be insignificant compared to *U_{Target}*.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016 D. Leontiev , N. Volovyk, O. Gryzodub – Metrological Aspects of the SPU Reference Standards Establishment 7

Interrelation between U_{RS} and U_{Target}

An SPU approach – the Principle of Insignificance:

l

At the level of reliability of 95 %:

$$J_1 \le 0.32 \times U_2$$

 U_1 – a source of uncertainty,

 U_2 – a combined expanded uncertainty

For example,

$$U_{Target} \leq 0.32 \times (\pm B),$$

B – content limits for finished drug products.

$$U_{RS} \le 0.32 \times U_{target.}$$

Note: The principle of insignificance is used in General Texts of SPU:

- 5.3.N.1. Statistical analysis of chemical experiment results;
- 5.3.N.2. Validation of analytical procedures and tests;
- 5.12. Reference Standards^N.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016 D. Leontiev , N. Volovyk, O. Gryzodub – Metrological Aspects of the SPU Reference Standards Establishment

The SPU approach to the U_{RS} evaluation

1. The well-known mass balance approach is used:

$$X_{Assigned_1} = 100 \% - \Sigma Imp;$$

 $U_{RS_1} = U(X_{Assigned_1}).$

Usually, $X_{Assigned_1}$ is given in a certificate.

But: this approach assumes that we are sure of the nature of impurities.

The lower an impurity content is, the lower U_{RS1} is.

For synthetic APIs: $U_{RS_1} \approx 0.1\%$ is <u>feasible</u>.

2. If possible, the alternative method (*orthogonal*) for the verification of $X_{Assigned_1}$ is used to confirm the reliability of our knowledge of impurities.

$$J_{RS_2} = U(X_{Assigned_2})$$

The most used alternative methods: Titrimetry, qNMR, and DSC.

For alternative methods: $U_{RS_2} \approx 0.5\%$ is <u>feasible</u>.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016

The SPU approach to the U_{RS} evaluation

3. If we have an additional method to confirm $X_{Assigned}$, then:

$$U_{RS3} = |X_{Assigned_1} - X_{Assigned_2}|$$

Alternative methods can have notable bias concerning the *mass balance* approach. Therefore,

 $U_{RS_3} \approx 0.5\%$ is <u>feasible</u>.

4. It is very valuable to verify $X_{Assigned_1}$ by comparison with:

- the previous batch of RS,
- any other authentic substance.

Therefore,

$U_{RS_4} = U(X_{Assigned_3})$

The approach (4) is the same as for the calibration of secondary RS.

Since we determine the principal component in a very pure substance, it <u>may be</u> difficult to achieve $U_{RS4} \approx 0.5\%$.

Any of the described evaluations of U_{RS} is essential for assessing the RS quality.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016 D. Leontiev , N. Volovyk, O. Gryzodub – Metrological Aspects of the SPU Reference Standards Establishment 11

The SPU approach to the U_{RS} evaluation

CONCLUSION:

- 1. The use of additional evaluation(s) of $X_{Assigned}$ is very valuable.
- 2. If an additional evaluation of U_{RS} is used (not only by the mass balance method):
 - $maxU_{RS} \le 0.5\% \Rightarrow$ a <u>feasible</u> but <u>limit value</u>;
 - $maxU_{RS} \approx 0.1\% \Rightarrow$ a myth!
 - It is <u>unclear</u> which U_{RS} should be given to a user.

The SPU approach to the U_{RS} evaluation

- To use verification of X_{Assigned} with additional method(s) (compulsorily);
- > To use the evaluation of U_{RS} for the alternative method(s) and the difference between the two $X_{Assigned}$ (compulsorily);
- > Any of U_{RS} evaluations must not exceed the max U_{RS} ;
- maxU_{RS} must be insignificant in relation to the most stringent requirements for U_{Taraet};
- > A user is provided with information only about $maxU_{RS}$ but not about any result of U_{RS_i} assessment.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016 D. Leontiev , N. Volovyk, O. Gryzodub – Metrological Aspects of the SPU Reference Standards Establishment 13

The metrological consistency of specifications and analytical methods

Specificity of pharmaceutical analysis is that the analysis and RS establishment are carried out <u>at the limit capability of analytical methods.</u>

Ph. Eur.: in an inter-laboratory experiment studied an analytical variability for some analytical methods. As a result, specifications for assay were adjusted to capability of analytical methods (expanded for some cases).

Issues that had not been taken into account:

- > The correctness of setting the specifications range and the choice of the analytical method should be considered given the feasibility of RS establishment (requirements for $maxU_{RS}$).
- The problem is also an issue of great importance for FDPs.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016

The SPU approach to the metrological consistency

TESTS		REQUIREMENTS for		ASSESSMENT OF		
		U _{Target}	maxU _{rs}	POSSIBILITIES OF USING RS		
ASSAY	APIs	s (<i>B_{Upper}</i> =100.5%):	0.5 %	0.16 % ¹	¹ – cannot be set as a	
	APIs	(<i>B_{Upper}</i> = 101%):	1%	0.32 % ²	requirement for RS; ² – achievable in certain favorable cases; ³ – usually does not cause	
	APIs	(<i>B_{Upper}</i> = 102%):	2 %	0.64 % ³		
	FDPs	s (± <i>B</i> = 5%):	1,6 %	0.51 % ³		
	FDPs, one-sided limit $(\pm B = 20\%)$:		6,4 %	2.0 % ⁴	problems; ^{4,5} – a substance (reagent)	
UNIFORMITY of DOSAGE UNITS, DISSOLUTION		3.0 %	0.96 % ³	with the content taken as 100 % can be used instead of RS (with the purity of		
RELATED SUBSTAN	CE 5	Quantitative tests	5.0 %	1.6 % ⁴	$^{4} \ge 98$ % or $^{5} \ge 95$ %, respectively).	
	CES	Limit tests	16 %	5.1 % ⁵		
RESIDUAL SOLVENTS		16.0 %	5.1 % ⁵			

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016 D. Leontiev , N. Volovyk, O. Gryzodub $\,-$ Metrological Aspects of the SPU Reference Standards Establishment $\,_{15}$

The SPU approach to the metrological consistency

CAPABILITY of USING ANALYTICAL METHODS	THE NARROWEST CONTENT LIMITS		
	APIs	FDPs	
TITRIMETRY (the use of RS is not required)	$B_{Upper} \ge 101 \%$	$\pm B = 3 \%$	
CHROMATOGRAPHY	$B_{Upper} \ge 101.5 \%$	$\pm B = 5 \%$	
SPECTROPHOTOMETRY (the use of RS is required)	$B_{Upper} \ge 101.5 \%$	$\pm B = 5 \%$	
SPECTROPHOTOMETRY (specific absorbance)	$B_{Upper} \ge 103 \%$	± B=10 %	

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016

The problem: metrological inconsistency of analytical procedures

An RS cannot be suitable if it is intended for use in a metrologically incorrect analytical procedure.

Typical problems for Assay:

- ✓ The interrelation between the requirement for analytical variability and the capability of an analytical method are not taken into account;
- The difference between requirements for APIs and FDPs is not taken into account;
- ✓ The dependency of requirements for U_{Target} on the specifications range is not taken into account.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016 D. Leontiev , N. Volovyk, O. Gryzodub – Metrological Aspects of the SPU Reference Standards Establishment 17

Reference Standards, Rockville, USA, November 3-4, 2016

Summary

The State Pharmacopoeia of Ukraine applies metrological approaches discussed above, in particular, for:

- ✓ Validation of Analytical Procedures;
- ✓ Qualification of Laboratory Equipment;
- ✓ Establishment of Reference Standards.

Currently, the nomenclature of reference standards of the State Pharmacopoeia of Ukraine established under the present approaches comprises around 700 items.

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016 D. Leontiev , N. Volovyk, O. Gryzodub – Metrological Aspects of the SPU Reference Standards Establishment 19

Thank You for Your Attention!

12th Annual International Symposium on Pharmaceutical Reference Standards, Rockville, USA, November 3-4, 2016