November 16-17, 2023

Workshop on Gene Therapy Product Activity & Comparability & the Evaluation of T-Cells Slides

Standards Recognition Program for Regenerative Medicine Therapies

Judith Arcidiacono M.S.

International Regulatory Expert

Lead for Regenerative Medicine Therapies Standards Program

FDA/CBER/Office of Therapeutic Products

Workshop for the Identification and Standardization of Methods for Assessing Gene Therapy Product Activity and Comparability, and the Evaluation of T Cell Therapies November 16 – 17, 2023

Benefits of Standards Use for

Eliminate redundancy, minimizing errors and reducing time to market Improve quality, lead-time, factory flexibility, and supply chain management

Can streamline premarket review by FDA

Standards Basics

U.S. National Technology Transfer and Advancement Act of 1995

https://www.nist.gov/standardsgov/natio nal-technology-transfer-andadvancement-act-1995

Definition of a Standard

Common and repeated use of rules, conditions, guidelines or characteristics for products or related processes and production methods, and related management systems practices

FDA

Written/Documentary Standards

- Documents that set forth:
 - Performance characteristics
 - Testing methodology
 - Manufacturing practices
 - Scientific protocols
 - Ingredient specifications
 - Data standards
 - Terminology/Nomenclature
 - Others

Physical Standards/Reference Materials

Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

ISO REMCO Committee on Reference Materials

Voluntary Consensus Standards Body (VCSB)

Develop voluntary consensus standards Characteristics of VCSB Processes

- 1. Openness
- 2. Balance
- 3. Due Process
- 4. Appeals Process
- 5. Consensus

OMB Circular A-119

Balancing the Need for a Standard with the State of Science

Does the base of scientific knowledge on the subject support the development of standardized approaches to methods, testing, etc. ?

Is there consensus among the scientific community that the approaches proposed are appropriate to address the need for standardization?

Feasibility Assessment

Considerations

- 1. What are the possible intended and unintended consequences?
- 2. How does the proposed standard effect existing work?
- 3. Are there other efforts to develop a specific standard in other standards venues?
- 4. Are there experts available to draft the standard?
- 5. How would the standard be implemented?

Standards Recognition Program for Regenerative Medicine Therapies (SRP-RMT)

Contains Nonbinding Recommendations

Table of Contents

III.	BACKGROUND
111.	
IV.	PURPOSE OF THE PROGRAM
V.	PROCEDURES FOR EVALUATING VCS FOR RECOGNITION IN THE SRP- RMT
VI.	DOCUMENTING THE USE OF A STANDARD RECOGNIZED BY CBER UNDER THE SRP-RMT IN A REGULATORY SUBMISSION
VII.	QUESTIONS AND ANSWERS
VIII.	PAPERWORK REDUCTION ACT OF 1995
IX.	REFERENCES
APPE	NDICES 10
	Appendix 1: Sample Standards Recognition Summary 10

Voluntary Consensus Standards Recognition Program for Regenerative Medicine Therapies

Guidance for Industry

Additional copies of this guidance are available from the Office of Communication, Outreach and Development (OCOD), 10903 New Hampshire Ave., Bldg. 71, Rm. 3128, Silver Spring, MD 20993-0002, or by calling 1-800-835-4709 or 240-402-8010, or email <u>ocod@fda.hhs.gov</u>, or from the Internet at <u>https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-</u> regulatory-information-biologics/biologics-guidances.

For questions on the content of this guidance, contact OCOD at the phone numbers or email address listed above.

U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research October 2023

OMB control number: 0910-0338 Current expiration date available at https://www.reginfo.gov. See additional PRA statement in Section VIII of this guidance.

i

What is the SRP-RMT?

- A program designed to identify <u>Voluntary Consensus Standards (VCS)</u> that facilitate the development and assessment of <u>regenerative medicine therapy</u> products regulated in the FDA Center for Biologics Evaluation and Research (CBER). <u>https://www.fda.gov/media/159237/download</u>
- The program fulfills requirements outlined in Section 3036 of the 21st Century Cures Act of 2016 where FDA, the National Institute of Standards and Technology (NIST), and RMT stakeholders coordinate and prioritize the development of standards that promote the development of RMTs, promote regulatory predictability and enhance regulatory review of submissions for RMTs.
- Consistent with US policy for standards (OMB Circular A-119¹ and NTTAA²) for promoting the use of VCS by the Federal Government.

¹https://obamawhitehouse.archives.gov/sites/default/files/omb/inforeg/revised_circular_a-119_as_of_1_22.pdf. ² https://www.nist.gov/standardsgov/national-technology-transfer-and-advancement-act-1995.

Voluntary Consensus Standards Body (VCSB)

- Qualities of VCSB
 - Processes the follow openness, balance, consensus, and due process
- American National Standards Institute (ANSI)
 - Accredits Standards Development Organizations that adhere to these principles
 - Examples:
 - ATCC- American Type Culture Collection,
 - ASTM- American Society for Testing Materials
 - IEEE- Institute of Electrical and Electronics Engineers
 - PDA- Parenteral Drug Association
 - CLSI- Clinical and Laboratory Standards Institute

Non-Voluntary Consensus Standards

Pharmacopeial standards

• Examples: US Pharmacopeia, Japanese Pharmacopeia, European Pharmacopeia

Accreditation standards

- Standards set forth by accreditation organizations to ensure that certain criteria are met for a specified process or system.
- Examples: Foundation for the Accreditation of Cellular Therapy (FACT), Association for the Advancement of Blood & Biotherapies (AABB)

Standards created by institutions or societies

• Examples: International Society for Stem Cell Research (ISSCR), International Society for Cell & Gene Therapy (ISCT)

Benefits of the SRP-RMT

Promote	Identify	Assist	
Promote the development of standards that can streamline the review of RMT products	Assist product developers in identifying standards that have been reviewed by FDA for scientific soundness and consistency with	Assist FDA reviewers in evaluating the proper use of a standard (fit-for- purpose) in a regulatory submission	
	FDA regulations		

and policies.

How will standards be identified for consideration in the recognition program?

FDA staff serving as liaisons to SDOs can nominate standards to be reviewed for recognition

Stakeholders may request recognition by emailing the SRP-RMT at: <u>SRP-RMT@fda.hhs.gov</u>

• Stakeholders should provide the name of the SDO, standard designation, title, version and year published and a short rationale for recognition

Who will evaluate the VCS for Recognition?

FDA subject matter experts will evaluate standards for:

- <u>Complete Recognition-</u> the entire contents of the standard is recognized
- <u>Partial Recognition</u>- only portions of the standard are recognized
 - FDA will identify the section(s) of the standard that are recognized.
- Standards that do not meet the criteria for recognition will not be recognized.
- Recognition is NOT required to use a standard in a regulatory submission.

Criteria for Evaluating Standards for Recognition The standard was developed by a VCSB

The standard does not conflict with current FDA statute, regulations, or policy

The standard is scientifically sound

The standard may facilitate the ability of a sponsor to meet regulatory expectations

The standard can assist FDA in the assessment of a regulatory submission for RMT products How will stakeholders know if a standard has been recognized?

- Recognized standards will be posted on the Standards Development for Regenerative Medicine Therapies page of the FDA website twice/year <u>https://www.fda.gov/vaccines-blood-</u> <u>biologics/standards-development-regenerative-</u> <u>medicine-therapies</u>
- Recognized standards will be accompanied by a Standards Recognition Sheet (SRS) that defines the terms of recognition
 - Components of the SRS:
 - CBER Assigned Recognition Number
 - Designation/title/scope of the standard
 - Extent of recognition (complete or partial)
 - Rationale for recognition
 - Name of the Standards Development Organization

Sample Standards Recognition Summary

CBER Recognized Standards for Regenerative Medicine Therapies Standards Recognition Summary (SRS)

Recognition Number (CBER Assigned) Date of Recognition:

Standard Information ISO XXXX, Edition YEAR

Scope/Abstract

Extent of Recognition (Complete or Partial) (For partial recognition CBER intends to identify the parts of the standard that are not recognized)

Rational for Recognition

(Ex. This standard is relevant to the characterization of CAR T cells and supports existing regulatory policy.)

Standards Development Organization (Ex. ISO International Organization for Standardization <u>https://www.iso.org</u>)

- Standards use is NOT required.
- Non-recognized standards may be used if fit-forpurpose.
- Use of a standard does not preclude FDA from asking for additional information to support the regulatory evaluation of a product.
- Standards that do not meet the definition of voluntary consensus standard may be used.
- When citing a standard, the following is required:
 - Name of the SDO
 - Designation and title
 - Version and date published
 - Statement of conformity
 - Used standard as written
 - Modified the standard- description of deviations from the standard and rational for deviation

Use of a Standard in a Regulatory Submission

Example of Citation of a Standard in a Gene Therapy Regulatory Submission

Standard: GTX 1234:Quantification of Nucleic Acids in a Biological Sample; 2021*

Possible sponsor statements in a submission:

Methods used to quantify nucleic acids in the final product were conducted according to GTX 1234; 2021 without deviation.

OR

Standard GTX 1234; 2021 was utilized for the quantification of nucleic acids except that the method of sample preparation was modified to be more suitable for our manufacturing conditions.

*The standard referred to in this example is hypothetical

Take Home Message

•Standards use is not required

- •Non-recognized standards can be used in a regulatory submission
- •When used, a standard must be fit for purpose
- •Stakeholders may request a standard be reviewed for recognition by emailing <u>SRP-RMT@fda.hhs.gov</u>

•List of Recognized Standards <u>https://www.fda.gov/vaccines-blood-</u> <u>biologics/standards-development-regenerative-</u> <u>medicine-therapies</u>

THANK YOU FOR YOUR ATTENTION ANY QUESTION?

Judith Arcidiacono, M.S. International Regulatory Expert US Food and Drug Administration Center for Biologics Evaluation and Research Office of Therapeutic Products

Judith.Arcidiacono@FDA.HHS.GOV

Comparability and the management of manufacturing changes for cellular and gene therapy products

> Anurag Sharma, Ph.D. Acting Team Lead, Gene Therapy CMC Division of Gene Therapy 1 Office of Therapeutic Products FDA Center for Biologics Evaluation and Research

> > Nov 16, 2023

2023 Draft Guidance Manufacturing changes and comparability

Manufacturing Changes and Comparability for Human Cellular and Gene Therapy Products

Draft Guidance for Industry

This guidance document is for comment purposes only.

Submit one set of either electronic or written comments on this draft guidance by the date provided in the *Federal Register* notice announcing the availability of the draft guidance. Submit electronic comments to <u>http://www.regulations.gov.</u> Submit written comments to the Dockets Management Staff (HFA-305). Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. You should identify all comments with the docket number listed in the notice of availability that publishes in the *Federal Register*.

Additional copies of this guidance are available from the Office of Communication, Outreach and Development (OCOD), 10903 New Hampshire Ave., Bldg. 71, Rm. 3128, Silver Spring, MD 20993-0002, or by calling 1-800-835-4709 or 240-402-8010, or email <u>ocod@ida hhs.gov</u>, or from the Internet at <u>https://www.fda.gov/accines-blood-biologics/guidance-compliance-</u> regulatory-information-biologics/biologics-guidances.

For questions on the content of this guidance, contact OCOD at the phone numbers or email address listed above.

> U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research July 2023

This draft guidance document is issued for comment purposes only

You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations

Provide advice for manufacturers of human cellular and gene therapy products regarding:

Managing manufacturing changes and reporting the changes to FDA

For both investigational and licensed products

Analytical comparability studies

Special considerations for cellular and gene therapies

Comparability study design and statistical approaches

2022 Draft Guidance Chimeric Antigen Receptor T cell products

Considerations for the Development of Chimeric Antigen Receptor (CAR) T Cell Products

Draft Guidance for Industry

This guidance document is for comment purposes only.

Submit one set of either electronic or written comments on this draft guidance by the date provided in the *Federal Register* notice announcing the availability of the draft guidance. Submit electronic comments to http://www.reguidanos.gov. Submit written comments to the Dockets Management Staff (HFA-303), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. You should identify all comments with the docket number listed in the notice of availability that publishes in the *Federal Register*.

Additional copies of this guidance are available from the Office of Communication, Outreach and Development (OCOD), 10903 New Hampshire Ave., Bldg. 71, Rm. 3128, Silver Spring, MD 20993-0002, or by calling 1-800-835-4709 or 240-402-8010, or email <u>ocod@fda.hhs gov</u>, or from the Internet at <u>https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-</u> regulatory-information-biologics.

For questions on the content of this guidance, contact OCOD at the phone numbers or email address listed above.

U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research March 2022

Provide advice for manufacturers of CAR T cell products regarding:

Manufacturing of vectors and CAR T cells

Including advice on change management and comparability

Manufacturing a CAR T cell product at multiple different facilities

Preclinical recommendations

Clinical recommendations

This draft guidance document is issued for comment purposes only

You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations

Risk management

Planning for future changes

Phase-dependent expectations

Comparability studies

Obtaining advice and feedback from FDA

Managing manufacturing changes

Reporting manufacturing changes to an IND or BLA

Assessing comparability

MANAGING MANUFACTURING CHANGES

FDA

Improving efficiency or reducing costs

Adjusting to changes in the availability of materials

Expanding product supply

Scale up

Scale out

New facility

The risk of a significant manufacturing change can be high for cellular and gene therapies

These are complex and novel products

Risk management relies on a clear understanding of critical aspects of the product and manufacturing process

Use a formal risk management strategy

Will enable you to evaluate manufacturing changes effectively and efficiently Will aid when deciding whether a comparability study is needed And will guide how to design the comparability study

We recommend Q9(R1) Quality Risk Management for advice on how to systematically manage risk

It is critical that manufacturing changes do not adversely affect product quality

Changes cannot compromise the safety or effectiveness of the product

Perform a risk assessment before making manufacturing changes

Risk assessment plays a central role in quality risk management

If a change has a potential to adversely affect product quality, determine the impact of the change

Perform comparability studies to evaluate any adverse effects of the change on product quality

Phase-dependent considerations when making manufacturing changes

The extent of comparability data needed is highly dependent on:

The stage of clinical development

The severity and likelihood that the change might adversely affect product quality

Comparability studies and statistical approaches should typically be more rigorous later in the product lifecycle

Changes in the middle of a pivotal study

Changes right before a BLA submission

Changes post-licensure

Best practices

Develop a thorough understanding of the product's quality attributes and how the manufacturing steps affect these attributes

When possible, implement any extensive changes before initiating pivotal studies

Challenges in managing manufacturing changes for cellular and gene therapy products

Challenges when assessing risks

Limited characterization of the product and the manufacturing process Uncertain mechanisms of action and difficulty measuring potency

Challenges for comparability studies

Variable cellular source material

- Limited cellular source material
- Limited number of lots
- Small lot size or limited sample volume
- Changes in assays
Plan ahead to reduce risks and disruptions from future manufacturing changes

- Develop a scalable process
- Retain sufficient samples of all lots
- Manufacture a sufficient number of lots to support future comparability studies
- Understand how changes to assays might affect your ability to evaluate comparability

REPORTING MANUFACTURING CHANGES TO AN IND OR BLA

Reporting manufacturing changes to INDs

Submit manufacturing changes that may affect product quality

- Update CMC information using IND amendments
- Submit CMC information well in advance of implementing the change To allow sufficient time for FDA review and feedback
- Also summarize any significant manufacturing changes in your IND's annual report

An IND may be placed on clinical hold if:

You make a manufacturing change with a potential adverse impact on safety or effectiveness, but you do not adequately evaluate the impact of the change

Some changes fundamentally alter the design or nature of a product

A fundamentally new product should be submitted in a new IND These types of changes are not amenable to comparability studies Please ask us if you are unsure

Examples:

For a T cell therapy:

Change from CD4+ T cells to a mixture of CD4+ and CD8+ T cells

For a gene therapy vector:

Change to the vector capsid that alters vector tropism

For a genome editing product:

Different target gene

Report the change in a supplement:

For manufacturing changes that have a substantial or moderate potential to have an adverse effect on product quality

Annual report:

For manufacturing changes that have a minimal potential to have an adverse effect on product quality

Include data to evaluate the effect of the change on product quality

An approved comparability protocol may ease implementation of a change

Submit your comparability protocol in a supplement, and we will review

ASSESSING COMPARABILITY

Involve a statistician when you design a comparability study

Obtaining feedback from FDA

- Prospectively discuss significant manufacturing changes
- Provide a detailed comparability protocol
- If a change needs to be made but the product is not comparable, discuss proposed clinical studies with the post-change product
- Mechanisms for obtaining feedback:
 - Formal meeting request
 - IND amendment
 - BLA product correspondence

Comparability studies, protocols and reports

Before conducting a comparability study, prospectively write a comparability protocol:

- Describe the manufacturing change
- Assess the risk of the change
- Describe the study design in detail, including which lots will be used
- List test methods and acceptance criteria
- Describe how the data will be analyzed

Submit the comparability report to your IND or BLA

Ensure that the safety and effectiveness of the product will not be compromised by the manufacturing change

It is not necessary for product quality to be identical after a manufacturing change

Demonstrate that the change has no adverse effect on the safety or effectiveness of the product

Evaluate all attributes of the product that might be adversely affected by the change

Changes to the manufacturing process can have higher risk than routine manufacturing

Lot release assays may not always be sufficient to evaluate comparability Additional product characterization is often appropriate

Changes to vector manufacturing

Compare quality attributes of the pre- and post-change vector Compare quality attributes of CAR T cells manufactured with the pre- and post-change vector, using the same cellular starting material

Manufacturing at multiple facilities

If the same product is made at more than one facility, it is important that these products are comparable

It is also important that assays give reproducible results even if performed at different sites

Changes to CAR T cell manufacturing

Some CAR T cell attributes are strongly linked to the cellular starting material Variation among donors → variation among CAR T cell lots
We recommend split-source studies, to decrease the impact of this variability Use the same cellular starting material in both the old and new manufacturing process

Products derived from a variable cellular starting material

Donor-derived cells are highly variable

This results in variable product attributes, which can make it difficult to evaluate how manufacturing changes affect product quality

Split-source material study design and paired statistical analysis may help

This study design can minimize the effect of source material variability

When manufacturing product for comparability studies:

Best to use the same type of source material as the clinical product

But may be able to use other material if justified (for example, cells from healthy donors)

Introduction

Description of the manufacturing changes

Rationale and justification for the changes

Justification of the comparability study design

Timeline for implementing the changes

Risk Assessment

Determine quality attributes that are at risk from the change

Select product attributes and process parameters to be evaluated

Comparability Study Design

- List the lots included in the study, and sources of historical product data
- Describe the test methods
- List the acceptance criteria for comparability of each attribute
- These should be based on understanding the relationship of the attribute to safety or effectiveness Refer to the draft guidance for some advice on specific situations

Results and conclusions

- Include data in tabular format, along with summary statistics
- Describe the conclusions from the study
- Explain any changes or deviations from the comparability protocol

A comparability study should reach a definitive conclusion

Is the post-change product comparable to the pre-change product?

Failing to detect differences is *not* the same as demonstrating equivalent product quality

Some comparability studies are inconclusive because of:

Lack of statistical power

Imprecise assays

Poor understanding of a product's quality attributes

Lack of assays to measure a product attribute that may be affected by the change

A two-sample *t*-test is usually not an appropriate method

If a product is not analytically comparable after a change (or if the comparability study is inconclusive), then:

Nonclinical or clinical studies may be needed to demonstrate the safety and/or effectiveness of the post-change product

Describe the statistical methods

Justify the assumptions of the statistical approach

For example, many parametric tests assume that data are normally distributed

Different statistical methods may be used to analyze different attributes

Studies should have adequate power to show that the change has no biologicallyrelevant adverse effects on product quality

- Use an adequate number of lots
- Assays need sufficient precision to detect biologically-meaningful differences

Two fundamentally different statistical approaches to evaluating comparability

Equivalence

Evaluate whether two populations are similar enough

Set acceptance criteria for the confidence interval of the difference in means

A rigorous approach, suitable for high-risk attributes

FDA

Quality range

Evaluate whether individual lots fall within an acceptable range

Post-change values should not fall outside a certain range

Risk management should play a central role in managing manufacturing changes and designing comparability studies

Plan ahead for future changes

FDA can provide advice through your IND or BLA

Contact Information

FDA

• Anurag Sharma, PhD

Anurag.Sharma@fda.hhs.gov

Regulatory Questions:
OTP Main Line – 240 402 8190
Email: <u>OTPRPMS@fda.hhs.gov</u>

• OTP (OTAT) Learn Webinar Series:

http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/ucm232821.htm

- CBER website: www.fda.gov/BiologicsBloodVaccines/default.htm
- Phone: 1-800-835-4709 or 240-402-8010
- Consumer Affairs Branch: <u>ocod@fda.hhs.gov</u>
- Manufacturers Assistance and Technical Training Branch: <u>industry.biologics@fda.gov</u>
- Follow us on Twitter: https://www.twitter.com/fdacber

Opportunities for Standardization in Comparability of Cell and Gene Therapies

Workshop for the Identification and Standardization of Methods for Assessing Gene Therapy Product Activity and Comparability and the Evaluation of T-Cell Therapies

Tal Salz, PhD | Practice Expert tsalz@darkhorseconsultinggroup.com Dark Horse Consulting Group

What is a standard?

"The term "standard" (or "technical standard") includes all of the following:

- (1) common and repeated use of rules, conditions, guidelines or characteristics for products or related processes and production methods, and related management systems practices;
- (2) the definition of terms; classification of components; delineation of procedures; specification of dimensions, materials, performance, designs, or operations; measurement of quality and quantity in describing materials, processes, products, systems, services, or practices; test methods and sampling procedures; formats for information and communication exchange; or descriptions of fit and measurements of size or strength; and
- (3) terminology, symbols, packaging, marking or labeling requirements as they apply to a product, process, or production method."

FDA Guidance for Industry: Standards Development and the Use of Standards in Regulatory Submissions Reviewed in the Center for Biologics Evaluation and Research (March 2019)

CGT Comparability is Complex

Considerations in Comparability

The Questions We need to Ask Ourselves

- Is comparability standardization desired by industry and stakeholders?
- Is comparability standardization desired by FDA?
- Can we find common ground and opportunities for comparability standardization
- Will comparability standardization effectively reduce burden for industry, stakeholders and FDA?

Can We Standardize Comparability?

- Demonstrating comparability is a complex exercise, particularly in the cell and gene therapy space and there is no one size fit all approach.
- However, there could be an opportunity for standardizing some elements associated with comparability evaluation:
 - Risk Assessment
 - Study Procedures (e.g., split-source material)
 - Method equivalence
 - Side-by-side testing
 - Statistical approaches
 - Qualification of Scale-down model
 - Qualification of retains
 - Study report/study protocol
 - Terminology

Risk Assessment

- Risk analysis is the estimation of the potential risk posed to product quality by a manufacturing change.
- ICH Q9(R1): "achieving a shared understanding of the application of risk management among diverse stakeholders is difficult because each stakeholder might perceive different potential harms, place a different probability on each harm occurring and attribute different severities to each harm"
- It is important that subjectivity inherent in performing a risk assessment is managed and minimized

Can Manufacturing Change Risk Assessment Be Standardized?

- The output of a risk assessment is either a <u>quantitative estimate</u> of risk or a <u>qualitative description</u> of a range of risk.
- Risk can be expressed using qualitative descriptors, such as "high", "medium", or "low", which should be defined in as much detail as possible.
- Risk can be expressed as a "risk score" to further define descriptors in risk ranking.

Evaluated elements:

Severity (S)	If a failure were to occur, what effect would that failure have on the product quality and on the patient (if any)?
Probability (P)	How likely is it for a particular failure to occur (probability of occurrence)
Detectability (D)	What mechanisms are in place (if any) to detect a failure if it were to occur?

Risk Priority Number (RPN)

- RPN = $S \times P \times D$
- The higher the RPN, the greater the risk

Variability is a Confounding Challenge for Comparability

Qualification Equivalence Side-by-side testing

Representative Split

Scale-down Model

Split Source Material Comparability Approach

Method Equivalence

- Methods and testing facilities change overtime
- Method equivalence is a working assumption in comparing the pre- and post-change test results when they were generated in different testing facilities or with different methods.
- Method equivalence is typically demonstrated through split sample(s) study
 - How to determine the number of samples?
 - Should samples with known range of results be included?
 - What is an acceptable %CV?
 - Sample stability
 - Number of operators

Side-by-side Testing

- Method variability can impact the results of comparability
- To reduce method variability, the pre- and post-change product samples could be tested side-by-side
- Side-by-side testing is defined differently by different people and includes the following considerations:
 - Same testing facility?
 - Same reagent lots?
 - Timing (you can get better at performing a method over time; trending)?
 - Simultaneous processing?
 - Same run?
 - Same instrument?
 - Same operator?

Statistical Methods

- Two-One-Sided Tests procedure (TOST) is a statistical method for comparability which has gained popularity in recent years
- Equivalence range is the largest acceptable difference between the pre-change and post-change attribute
- Working assumptions and statistics could be standardized
- The equivalence range should be determined on a case-by-case basis

Equivalence range

Qualification of a Scale-down Model

- CGT processes are costly
- Manufacturing lots strictly designated for comparability at the CDMO is often not possible
- Scale-Down process models can be used for demonstrating CGT comparability
- The Scale-Down process should be shown to be representative of the full-scale process and generate a product with similar quality
- What parameters should be kept constant?
- What attributes should be evaluated?
- What acceptance criteria should be satisfied?

Qualification of a Scale-down Model

- Is there an opportunity to define standards for qualifying a Scale-Down model?
 - Proportion

Retains

- Retains are often used to test pre-change lots
- The storage and age of retain samples can impact their quality
- How do we ensure that the retain sample used is representative of the pre-change product?
 - Stability
 - Storage conditions
 - Control test

Study report/protocol

- Comparability protocol and comparability report submissions are notably different and often are missing important information
- Standardization of the structure and/or information that should be included in a comparability protocol/report will streamline submissions and facilitate FDA review

Table of Contents

Introduction
Description of change and rationale1
Stage of clinical development and intended timing of implementation1
Risk Assessment
Description of risk assessment approach1
Evaluated CQAs1
Tier approach1
Analytical Methods
Description of analytical methods (or reference to the description)2
Description of suitability2
Method Equivalence2
Study Design
Comparison Approach2
Comparison lots2
Acceptance criteria2
Statistical Analysis
Results
Conclusions

Terminology

- Analytical Comparability
- Side-by-side testing
- Prospective analysis
- Retrospective analysis
- Method equivalence
- Method bridging
- Split source material (same donor? Same apheresis collection? Same PBMCs?)
- Equivalence Range
- Quality Range

Summary Thoughts

- Comparability comes in many shapes and forms
- However, there are opportunities for standardizing elements relevant to comparability of CGTs which could benefit both FDA and industry
- However, the most difficult task of establishing comparability acceptance criteria is unique to the product
- Limited number of lots available for comparability analysis remain a significant challenge which could be salvaged using a scale-down model.

Thank you!

tsalz@darkhorseconsultinggroup.com

Evolving Standards and Tools to Meet Industry Needs in Cell and Gene Therapy

Diane McCarthy November 16, 2023

- Value of Standards for Cell and Gene Therapy
- → Raw and Starting Materials
- \longrightarrow Impurities

Partnerships through our Shared Challenges

Partnering with our expert volunteers

USP's public quality standards, developed by volunteer experts, including government liaisons, enable transparent processes that ensure quality methods, APIs, and education

Partnering with industry

Manufacturers must be able to bring quality pharmaceuticals to market and depend on quality-assured methods, materials, and resources to reduce risk to market entry

Partnering with regulators, including the FDA

Regulators must be able to ensure pharmaceuticals are approved for market regardless of technology

- used. They depend on a
- quality-assured scientific basis for decision-making in regulatory
- review, manufacturing practices,
- and enforcement

Partnering with strategic collaborators

Strategic collaborations are critical for identifying and pursuing key growth objectives, deepening and broadening quality systems, and enabling the overall medicine value chain, end to end

Need for Standards and Best Practices

- The use of standards can facilitate product development and reduce the amount of documentation needed in a regulatory submission, thus contributing to a more efficient submission evaluation and, ultimately, improving time to market."
 - FDA 2019 Guidance for Industry: Standards Development and the Use of Standards in Regulatory Submissions Reviewed in the Center for Biologics Evaluation and Research
- Validated compendial assays reduce the burden of method development and technology transfer
- Reference materials benchmark measurements and validation criteria across batches, manufacturing sites, and product developers
- Phase-appropriate best practices balance risk and benefit

Supporting Quality and Consistency of Emerging Modalities

Benefits of Standards include:

- Consistency Help facilitate consistent and predictable manufacturing processes, product testing throughout lifecycle
- Innovation Foster innovation and adoption of new technologies, lower R&D costs by building on existing standards
- Supports meeting regulatory expectations, and facilitate market entry for safe and effective products, including products from emerging technologies
- Remains challenging to defining a standard that suits every developer's needs
 - Diverse range of product types
 - Unique requirements for raw materials
 - Lack of alignment on PQAs and test methods

Best Practices (chapters above 1000)

Physical Reference Standards and Materials

Validated Compendial Methods (below 1000 Chapters)

Training and Education

Raw and Starting Materials

Challenges in Ensuring Quality of Raw Materials

- Some products are not amenable to extensive purification, filtration, or terminal sterilization
- Compendial testing may not be possible
 - No appropriate compendial methods
 - Limited or expensive material
 - Short shelf-life
- Raw material produced using GMP principles may not be available
- Vendor testing insufficient to assure raw material functionality
- Lot-to-lot variability in material quality and function

Existing USP Public Standards for Raw & Starting Materials

Documentary standards–General chapters

- <1044> Cryopreservation of Cells
- <1043> Ancillary Materials for Cell, Gene, and Tissue Engineered Products
- <1042> Cell Banking Practices for Recombinant Biologics NEW
- C <1027> Flow Cytometry
- <1024> Bovine Serum
- <1040> Quality Considerations of Plasmid DNA as a Starting Material for Cell and Gene Therapies published in PF 49(6)

لم	5
(
Ľ	 \exists

Reference Standards

- CD34+ Enumeration System Suitability (freeze-dried cells)
- Fetal Bovine Serum
- Albumin (recombinant and bovine)

- <90> Fetal Bovine Serum--Quality Attributes and Functionality Tests
- <89> Enzymes Used as Ancillary Materials in Pharmaceutical Manufacturing
- <92> Growth Factors and Cytokines Used in Cell Therapy Manufacturing
- <127> Flow Cytometric Enumeration of CD34+ Cells

- Trypsin
- Collagenase I and II

Development of Chapter on Best Practices for Plasmid DNA

- Stakeholder feedback indicated there was insufficient regulatory guidance for plasmid DNA used in the manufacturing of cell and gene therapy
- USP has recognized this gap and initiated efforts to define plasmid DNA best practices
 - USP Expert Panel for plasmid DNA was established to provide guidance
 - Recruited expert volunteers through an open Call for Candidates
 - General Chapter was published in Pharmacopeial Forum on Nov 1, 2023
 - Open for public comments until Jan 31, 2024
 - https://www.uspnf.com/pharmacopeial-forum

CHAPTER OUTLINE

- Manufacturing Considerations
 - Master Cell Bank
 - Facility Design
- Quality Management
 - Phase Appropriate Quality Systems and Facilities
- DNA Starting Material Quality
 - Quality Attributes
 - Stability Testing
 - Performance Testing
 - Plasmid to Plasmid Cross-Contamination
 - Receipt Testing
 - General Acceptance Criteria and Manufacturing Considerations

Standards and Tools in Development

- General Chapters (<1000) with validated methods and associated Reference Standards for
 - Enzymes used in CGT processing
 - Cytokines and growth factors used in cell culture

Reference Materials:

 Plasmid DNA for quality assessment of ancillary materials

Product Quality Attributes

Existing USP Chapters Supporting Manufacturing and Quality Control of Cell, Gene and Tissue Products

<1046> Cell-based
Advanced Therapies
and Tissue-Based
Products

- Qualification of source cells/tissues
- Manufacturing process considerations
- Final product release testing
- General considerations of CQAs for potency, purity, identity, stability, sterility, packaging and administration
- Fundamental steps for tech transfer

<1047> Gene Therapy Products

(under revision)

- Addresses both commercial and clinical trial materials
- Manufacturing and process development considerations
- Vector design, manufacturing and purification
- Analytical tests for CG products

Challenges of AAV Gene Therapies Manufacturing

Challenges

- Manufacturing viral vectors requires several discrete manufacturing activities, each with requirements for production, purification, release and stability testing
- A variety of analytical methodologies are in use for assessing PQAs and there is limited harmonization or use of common standards used across products/developers

□ Solutions

- Convened industry experts through USP sponsored roundtables and events to identify challenges and potential solutions
- Build alignment on key considerations and best practices
- Identify opportunities for standards to alleviate bottlenecks and improve efficiency of development

Aligning on Best Practices for AAV Products

Stakeholders expressed need for harmonization of CGT methods

- Feedback from Expert Committee, industry stakeholders, and USP roundtable in December 2021
- USP established an AAV Gene Therapy Expert Panel
- Panel initiated work in June 2022

CHAPTER OUTLINE (as of Nov 2023)

- Vector Characteristics & Design
 - Safety, transgene cassette, capsid
- Materials
 - Raw and critical starting materials
- Manufacturing
 - Drug Substance (Seed train to purification)
 - Drug Product
- Formulation & Final Presentation
- Control Strategy
 - Microbial and viral testing
 - Reference Standards, Assay Controls, In-Process Controls
 - Drug Substance/Drug Product Quality
- Stability
 - Starting Materials, DS, DP, Stability studies
- **Comparability**
 - Phase Appropriate Comparability Strategies

Full-to-empty AAV Vector Characterization

- November 2019 NIIMBL Technology Workshop identified an interlaboratory study on measuring the ratio of full-to-empty viral capsids as a high impact activity
- USP, NIST and NIIMBL collaborated on a study to assess and harmonize (where applicable) analytical methods for analysis of full-to-empty ratio
 - Interlaboratory studies to measure full-to-empty ratio of AAV
 - AAV serotype 5 and 8 were evaluated with different full to empty ratio
 - 7 organizations participated to the study
 - Analyze and share data to help standardize methods
 - Manuscript in preparation

Physical Reference Materials in Development

- Vector genome titer for AAV
- Vector genome titer for LVV
- LVV integration copy number
- AAV Capsids
 - Empty: full ratio
 - Capsid protein analysis
 - Aggregation

Impurities

Process Related Impurities

Impurities are process-specific, not an exhaustive list!

- Cell substrate-derived process impurities
 - Residual DNA (host cell DNA)
 - Host Cell Proteins
- Cell culture derived impurities
 - Growth factors, FBS
 - Process additives including surfactants, antifoam agents, residual solvents
- Residual Raw/ Starting Materials
 - Plasmids
 - Transfection reagents

- Quantities in final product need to be controlled and monitored
- WHO and FDA guidelines recommend a limit of 10 ng/dose residual DNA in a final product dose
- Physical Materials needed to support quantitation
- Residual HCPs can impact product quality, safety, and efficacy
- HCP levels should be measured in preclinical toxicology lots, clinical development and process validation
- Due to complex assay development, best practices can improve consistency

New Reference Materials for Residual DNA

Residual Host Cell DNA

- USP-ATCC Genomic DNA products
- Support quantitation of residual DNA
 by qPCR for common CGT cell lines
 - Residual HEK293 DNA
 - Residual Sf9 DNA

https://www.usp.org/biologics/atcc-usp-genomic-dnas

Resources to Support Host Cell Protein Measurement

Immunoassays are routinely used to monitor total HCP content

- Reagent development and qualification can be complex
- <1132> Residual Host Cell Protein
 Measurement in Biopharmaceuticals
 - Outlines best practices for total HCP measurement
 - Describes Immunoassay Methods, Reagents, Method Development, Qualification, and Validation

- Mass spectrometry is increasingly to identify individual HCPs
 - Supports more detailed risk assessment and enables detection of HCPs that may be under-represented in immunoassay results
 - <1132.1> Residual Host Cell Protein Measurement in Biopharmaceuticals by Mass Spectrometry
 - Published in PF in May 2023
 - Covers Sample Preparation, Standards, Acquisition Methods, Data Processing and Reporting

Standards and Tools in Development for Other Residual Impurities

General Chapters (<1000) with validated methods and associated Reference Standards for

- Replication competent testing for AAV
- Residual testing of PEI

Reference Materials:

Plasmid DNA for residual analysis (Ampicillin and Kanamycin)

Continued Collaboration

- The complexity and diversity of cell and gene therapies present challenges in standardization of methods and assays
- USP is committed to working with stakeholders to streamline and expedite development of safe and effective therapies to patients
- USP will continue to support the standardization of CGT products through the development of standards and tools

Opportunities for Engagement and Collaboration

- Roundtables and working groups
- Donate methods and/or material to support standard development
- Round Robin studies and Collaborative Testing
- Review of Chapters and Stimuli Articles on Pharmacopeial Forum
 - <u>https://www.uspnf.com/pharmacopeial-forum</u>
- Stakeholder Forum: Nuanced Analytical Approaches to Cell and Gene Therapy -February 22, 2024

Thank You

diane.mccarthy@usp.org

The standard of trust

NIST Genome Editing Consortium Overview

National Institute of Standards and Technology U.S. Department of Commerce Samantha Maragh Leader, NIST Genome Editing Program

NIST – National Institute of Standards & Technology

MISSION

To promote U.S. innovation and industrial competitiveness by advancing **measurement science**, **standards**, and **technology** in ways that enhance economic security and improve our quality of life

Neutron Research

How does NIST work with communities to meet needs? NIST

NIST-FDA Collaborations on Standards Leveraging unique expertise

NIST engages in discussions and collaborates with industry and others on pre-competitive technologies

NIST expertise in measurement sciences address specific analytical challengesA

FDA scientific and regulatory expertise ensure that standards:

- do not conflict with **FDA** regulation and policy
- address significant
 regulatory challenges that
 recur across the field

Cytotherapy Volume 20, Issue 6, June 2018, Pages 779-784

Reports

FDA and NIST collaboration on standards development activities supporting innovation and translation of regenerative medicine products

Judith A. Arcidiacono ¹ $\stackrel{\circ}{\sim}$ \boxtimes , Steven R. Bauer ¹, David S. Kaplan ², Clare M. Allocca ³, Sumona Sarkar ⁴, Sheng Lin-Gibson ⁴

Show more

https://doi.org/10.1016/j.jcyt.2018.03.039

Get rights and content

Standards Development

Workshops and Public Meetings

Research Collaborations

MATERIAL MEASUREMENT LABORATORY

Genome Editing Overview

NIST

NIST Genome Editing Program

Vision: Support quality in measurements for translating genome edited product to market **Goal:** Develop measurement tools standards to <u>increase the confidence</u> of utilizing genome editing technologies in research and commercial products.

FDA requires reporting including:

- off-target genomic positions,
- on-target and off-target sequence change
- relative frequency of variant occurrence

Define the problem

Where in your process is it very important to know if the answer/data is reliable?

Where of theses processes is it currently difficult to understand if these answers/data are reliable?

What can be done to give more confidence in these types of assays/data?

Standards needs identified by the Genome Editing Community

Where may there be off-target activity?

How do we evaluate and compare delivery systems?

 Delivery systems are varied and expanding, may be part of an ex vivo cell engineering process or your final product, but there are no norms on how to evaluate them and compare What are resources or practices to get most use our of data, understand if data is comparable, and understand bioinformatics performance?

What genome variants were generated?

- Metadata norms and infrastructure to capture and share metadata
- Standard datasets and interlab comparisons

Genome Editing Process

Measurements + control samples

Data + control datasets

Metadata

NIST Genome Editing Consortium NIST (launched October 2018, still accepting members)

MISSION

Convene experts across academia, industry, non-profit & government to addresses the measurements and standards needed. to increase confidence of utilizing genome editing technologies in research and commercial products

- Abigail Wexner Research Institute at . ٠ Nationwide Children's Hospital
- Agilent*
- Aldevron
- Applied StemCell
- AstraZeneca
- **Bionano Genomics**
- Bio-Rad*
- **BioSkryb Genomics**
- Bluebird bio*
- **Broken String Biosciences**
- **CRISPR QC** .
- **Caribou Biosciences** .
- Catalytic Data Science
- Cergentis ٠
- **COBO** Technologies ٠
- College of American Pathologists (CAP)
- **CRISPR** Therapeutics
- DARPA .
- DowDuPont Agroscience (Corteva)* .
- **Editas Medicine**
- EMBL-EBI
- Emerzene Inc
- **FDA CBER**
- Genomic Vision
- Revvity (Horizon Discovery) Broken String
- Illumina
- Inscripta *
- * Former members Integrated DNA Technologies

- Intellia Therapeutics
- KromaTiD
- Lonza*
- Psomagen (Macrogen) •
- Mass General Hospital •
- Metagenomi
- Mission Bio
- Novartis
- New England Biolabs
 - NIH/NINDS
- NIH SCGE

scribe

SeQure

CAP COLLEGE of AMERICAN PATHOLOGISTS

CERGENTIS

Pfizer

vérve

TWINSTRAND

CRISPROC

(Io)

111

Metagenomi

- Resiliance US, Inc.
- Sangamo Therapeutics
- Scribe Therapeutics
- SeQure Dx
- St. Jude Children's Research Hospital

ThermoFisher Scientific

Twinstrand Bioscineces

Verve Therapeutics

WhiteLab Genomics

Synthego

UCSC

UNOVARTIS

Humaniang Genomics macrogen KromaTiD

HI INSCRIPTA

- Pfizer
 - **Precision Biosciences**

CRISPR

THERAPEUTICS

St. Jude Children's Research Hospital

6

CATALYT

3

WHITELAB

NIST coordinates

MEMBERS

with FDA Center for Veterinary Medicine (CVM)

COBO TECHNOLOGIES

bionano

- DARPA NIH CGE NINDS Thermo Fisher × Agilent Technologies illumina BioLabs Lonza
- PRECISION bluebirdbio Sangame editas Inte ia CORTEVA AstraZeneca 📞 CARIBOU aldevron **≥**SYNTHEGO horizon **XIDT** BIO RAD ASC Applied StemCell SANTA CRUZ MASSACHUSETTS GENERAL HOSPITAL EMBL-EBI

GENOMI
NIST Genome Editing Consortium Progress

NIST

WG1: Specificity Measurements

Develop cell and DNA based control materials and test via interlab analysis (Genome in a Bottle and Human iPSCs)

Documented process, baseline data, mixture studies, interlab studies, benchmark data

WG2: Data & Metadata

- Community norms for data formats and tools for benchmarking data analysis (*in silico* and experimental data sets)
- Identify metadata that would be needed to be shared, housed, and interrogated from genome editing experiments and develop tools to accelerate metadata sharing

DNA and cells representing a variety of DNA sequence benchmarks "looks like a genome editing output" Deeply characterized at benchmark locations

✓ Transfer of Knowledge ✓ Reproducibility

What are the data we are generating? When do we need to collect the metadata? How do we store data and metadata? Where do we store data and metadata

metadata from consortium studies and benchmark datasets as shared resources for the community

WG3: Lexicon

Identify terms and related definitions to form a common genome editing community lexicon

WG1 – Progress:

- A set of Phase 1 DNA and cell based control materials have been generated and an interlab study is completed with final data analysis in progress
- Additional engineered cell controls are in progress with some clonal cell lines completed

WG2 – Progress:

- Phase 1 metadata entries and template completed
- Metadata schema in progress with test database integration
- Testing use cases and user interfaces, and interoperability of a metadata standard format and database(s) to house records.

WG3 – Progress:

ISO Standard for *Genome Editing Vocabulary* released with update July 2022

Physical Measurement samples & data NIST

WG1: Specificity Measurements

Goal:

Develop DNA/cell based control materials and test analytical methods via interlab analysis

DNA and cells representing a variety of DNA sequence benchmarks "looks like a genome editing output" Deeply characterized at benchmark locations

Interlab Study design using unedited Genome in a Bottle samples

Blinded study to test assay capabilities to accurately report variant size and frequency

 Participants provided a list of Positions of interest, but are blinded to the genomes uses, the variant(s), and variant frequencies

- Samples <u>made and qualified by NIST</u> and expert control labs for sequence and variant frequency
- Samples <u>bottled and shipped by NIST</u> to interlab participants in relevant formulations for their technology (purified DNA mixtures or cell mixtures)
- Interlab <u>participants perform DNA detection</u> as they would normally or to test any technology of interest to verify DNA variants after editing

5 required samples with benchmark variant frequencies: 0 %

Variant frequency

- ✓ 0.1 0.25 %
- ✓ 0.5 2 %
- ✓ 5 10 %
- > 30 % (high variant control)

2 optional samples

- ▶ 0.01 0.025 %
 - > 0.001 0.0025 %

Variant sequence identity (length and/or sequence)

-		=	
< 15 bp del	< 50 bp del	~ 300 – 500 bp del	> 2 kb ins
< 15 bp ins	< 50 bp ins	~ 300 – 500 bp ins	~ 10 kb del
< 25 bp del	~150 bp del	~ 1 – 2 kb del	~ 10 kb ins
< 25 bp ins	~ 150 bp ins	~ 1 – 2 kb ins	> 50 bp del
	< 15 bp ins < 25 bp del	< 15 bp ins < 50 bp ins < 25 bp del ~150 bp del	< 15 bp ins < 50 bp ins ~ 300 – 500 bp ins < 25 bp del ~150 bp del ~ 1 – 2 kb del

Nate Olson

Overview of interlab participation

14 total participants

Amp-based		2 of which were	unb	linded)	Γ
lumina NGS	(6 Technology Users		Technology Makers	
Blin	ded:	6		6	
A Unblin	ded:	0		2	
Mole	Users Makers Imaging/microscopy: 0 2 Wide DNA: 6 3 Illumina NGS-based: 6 5 DNA electropherogram: 0 1 NA imaging/microscopy: 0 2 # Replicates: 1-4 1-4				
Genome Wide	DNA:	6		3	
Illumina NGS-ba	sed:	6		5	L
Jump G Technology Users 8 Technology Makers 0 6 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0					
•••	• •	0		2	
And Stress And Stress 6 Technology Users 8 Technology Makers 0 6 6 6 0 1 0 2 0 1 0 3 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 <td< th=""><th></th></td<>					
# Workflows per submi	tter:	1-2		1-2	
	NOT	DENTIFIED with	<u>ID</u>	<u>ENTIFIED</u>	
		their data	witl	h their data	L

TECHNOLOGY MAKERS:

Bionano Genomics, Inc. **BioSkryb Genomics** Cergentis COBO Technologies **Genomic Vision** Illumina **MissionBio TwinStrand Biosciences TECHNOLOGY USERS: CRISPR** Therapeutics Editas Medicine IDT

Intellia Therapeutics St. Jude Children's Reseach Hospital

[additional participants not listed]

Metadata & Data Return

Structured	Experimental Metadata	Structured		Requested Raw &		
 Date Multiplex PCR process Sequencing Assay Type Sequencing Platform 			Bioinformatics Metadata	Additional Data		
 Sequencing Reagents or Kit DNA Concentration per reaction (ng) # Library Replicates UMI - used/index or in-line/length 	 Flowcell kit or Capillary type # Libraries pooled onto flowcell # Libraries pooled per lane of flowcell Read depth per panel Re-Quanitification instrument/kit Re-Quantification concentration (ng/uL) 		Average read length used to call variant Amplicon/ Average fragment length	RawProcessed.fsa.bed.fastq.smap.bnx.vcf.bam		
Structu	red Results Reporting		of DNA sequenced	Other		
 Coordinates Reference Sequence Variant Sequence Variant Type (substitution, deletion, insertion, complex Total Reads for Signal or Site 	,		Median observed read length Software – name, version Parameters Code	 QC Reports Images READMEs Protocols Total Data Size: ~ 43Tb 		
Sierra Miller		<u> </u>		METADATA METADATA		

GIAB Interlab Mixture Study: Overview & Progress

Participants perform analysis and return results, with metadata & data files

NIST compilation of metadata, data, & results and share with members

Draft paper for publication, and public release of metadata, data & results

Data & Metadata: A Need for Standards NST

Knowledge Transfer – comprehending what that information is or is not telling you – only as good as the metadata provided

There is a need for <u>accessible</u>, <u>organized</u>, & <u>structured</u> <u>metadata</u> with <u>understood</u> <u>terms</u> to promote:

- scientific integrity •
- reproducibility
- efficiency
- sharing

- cooperation
- knowledge transfer
- scientific advancement
- positive public perception
- <u>F</u>indable <u>A</u>ccessible <u>I</u>nteroperable <u>R</u>eusable (FAIR) Data Principles

Data & Metadata norms and tools for Genome Editing

Transfer of Knowledge
 Reproducibility

What are the data we are generating?

When do we need to collect the metadata?

How do we store data and metadata?

Where do we store data and metadata

metadata from consortium studies & benchmark datasets as shared resources for the community

1. Metadata entry curation:

(how can this be normalized and low burden for a user)

	EDITOR-PROTEIN			
metadata_field	example			
Editor Type	(Cas, TALEN, Zinc Finger)			
Reagent Type	(mRNA, plasmid, protein)			
PAM Preference	(3' NGG)			
Target Sequence	((i.e. for TALEN or ZFN))			
Editor Cleavage Type	(blunt)			
Editor Activity	(Target strand nickase)			
Editor Protein Variant	(i.e., D10A)			
Annotated Map	(annotated genbank sequence file, filename here)			
Editor Substrate	(double stranded DNA)			
Editor Alias	(NA)			
Source	(IDT)			
Editor Subtype	(Cas9)			
Editor Species	(S. pyogenes)			

2. Metadata file format (GEM)

JSON format

- 1. Human readable
- 2. Database ready
- 3. Can be validated (JSON Schema)
- 4. Already used by NIST
- 5. Easy to extend

METADATA

Design and feasibility of a database with easy user interface

Target sequences

(may have multiple target sequences) (region of the genome targeted).

× Target sequence	
Target sequence 2 *	
× Target sequence	
+ Target sequence × Last Targ	get sequence X All
argeting Strand	

<u>4. Datasets as control</u> <u>data linked to metadata</u>

Lexicon working group

Identify terms and related definitions to form a common genome editing community lexicon

- enable clear communication of scientific results
- facilitate effective communication with regulators (e.g., FDA, USDA)
- have the potential for international acceptance

National Institute of Standards and Technology U.S. Department of Commerce

Genome Editing Concepts

Gene editing Genome editing Genome engineering Specificity Target Off-target

Genome Editing Tools

General

Site-directed nuclease Site-directed DNA modification enzyme Repair template

CRISPR-Specific

Guide RNA (gRNA) CRISPR RNA (crRNA) tracrRNA (trans-activating CRISPR RNA) sgRNA (single-guide RNA) PAM (protospacer adjacent motif) RNP (ribonucleoprotein) Cas nuclease target site Target strand

Genome Editing Tools

Meganuclease - Specific

Meganuclease Meganuclease single chain Meganuclease linker Meganuclease target site

TALEN - Specific

TALEN TALEN linker Repeat variable diresidue (RVDs) TALEN target site

megaTAL - Specific

megaTAL megaTAL linker megaTAL target site

ZFN - Specific

Zinc Finger Nuclease (ZFN) ZFN linker Zinc Finger Protein (ZFP) Zinc Finger Recognition helix ZFN target site

Genome Editing Outcomes

Edit

Unintended edit Intended edit HDR (homology-directed repair) NHEJ (non-homologous end-joining) Microhomology-Mediated End Joining Repair (MMEJ) InDel mutation

Terms v1

Lexicon contributing drafting organizations and expert commenters

Industry and commerce – large industry

- Novartis
- AstraZeneca
- <u>Thermo Fisher</u> <u>Scientific</u>
- <u>New England Biolabs</u>
- Illumina
- <u>Lonza</u>
- Johnson & Johnson

Industry and commerce – SMEs

- <u>Bluebird bio</u>
- <u>Caribou Biosciences</u>
- <u>Cortevea Agroscience</u>
- CRISPR Therapeutics
- Editas Medicine
- Horizon Discovery
- Integrated DNA Technologies
- Intellia Therapeutics
- <u>Precision Biosciences</u>
- Sangamo Therapeutics
- Synthego
- Casebia Bio

Government

• FDA

- USDA
- NIH

Academic and research bodies

- <u>Harvard University</u>
- <u>St Jude Children's</u> <u>research hospital</u>
- The Broad Institute
- MIT
- Stanford University
- <u>University of</u> <u>California Berkeley</u>
- The Jackson Labs
- The University of Copenhagen
- The CRISPR Journal
- NC State University
- The University of Massachusetts Medical School
- UCSF
- UCSC

Non-governmental organizations

- <u>EMBL-EBI</u>
- The World Health Organization
- Alliance for Regenerative Medicine
- USP

Process prior to ISO submission

Process prior to ISO submission continued

September – late October 2019

Dec 2019 – proposed as new project at ISO meeting May 2020 – ISO project began...

ISO 5058-1:2021 Genome editing – Part 1:Vocabulary

https://www.iso.org/standard/80679.html	$\leftrightarrow \rightarrow \mathbf{C}$ $$ https://www.i			<u> </u>
		$\leftrightarrow \rightarrow C$ https://www.is	iso.org/obp/ui/#iso:std:iso:5058:-1:ed-1:v1:en	
ISO	Online Browsi	Online Browsi	ing Platform (OBP)	
	Searc			
ICS > 07 > 07.080	ISO 5058-1:2021(en) Biote	Searc	ch ISO 5058-1:2021(en) ×	
ISO 5058-1	I Table of contents	ISO 5058-1:2021(en) Bioted	echnology — Genome editing — Part 1: Vocabulary	
	Introduction	Table of contents	(
Biotechnology —	1 Scope	Foreword	3 Terms and definitions	
	2 Normative references • 3 Terms and definitions	Introduction	ISO and IEC maintain terminological databases for use in standardization at the following addresses:	
	3.1 Genome editing concepts	1 Scope		
	3.2 Genome editing tools	 2 Normative references 3 Terms and definitions 	 — ISO Online browsing platform: available at <u>https://www.iso.org/obp</u> 	
	3.3 Genome editing outcomes4 Abbreviated terms	3.1 Genome editing concepts	 — IEC Electropedia: available at <u>http://www.electropedia.org/</u> 	
ABSTRACT PREVIEW	Bibliography	3.2 Genome editing tools		
This document defines terms related to gen	Index	3.3 Genome editing outcomes	3.1 Genome editing concepts	
This document is applicable to general use		4 Abbreviated terms	3.1.1	
This document is applicable to general use		Bibliography Index	gene editing	
GENERAL INFORMATION			techniques for genome engineering (3.1.3) that involve nucleic acid damage, repair mechanisms, replication and/or recombination for incorporating site-specific modification(s) into a gene or genes	
Status : 🛛 Published			Note 1 to entry: Gene editing is a subclass of genome editing (3.1.2).	
Edition: 1			Note 2 to entry: There are various genome editing tools (see 3.2 and Figure 1).	
Technical Committee : ISO/TC 276 Biotechn			3.1.2 genome editing	
ICS : 07.080 Biology. Botany. Zoology 01.((Vocabularies)			techniques for genome engineering (3.1.3) that involve nucleic acid damage, repair mechanisms, replication and/or recombination for incorporating site-specific modification(s) into a genomic DNA	
			Note 1 to entry: Gene editing (3.1.1) is a subclass of genome editing.	
			Note 2 to entry: There are various genome editing tools (see 3.2 and Figure 1).	
		· · · · ·	and rapidly advancing global bioscience field with applications in many biotechnology	

specific manner. Modifications can include insertion, deletion or alteration of nucleic acids. The technology operates by biocher

Ontology for Genome Editing Lexicon now in BioPortal

NIST

+ 0

sdmiller - Support -

1	1		Di
		Γ	BI

oPortal Ontologies Search Annotator Recommender Mappings

NIST Genome Editing Lexicon

Last uploaded: December 8, 2021

Summary Classes Properties Notes Mappings Widgets

Details		N
Acronym	NIST_GEL	(
Visibility	Public	I
Description	Genome editing technology is a fast-growing and rapidly advancing global bioscience field with applications in many biotechnology sectors. Genome editing is used to modify the nucleic acids of a genetic code, which can be composed of DNA or RNA, in a site-specific manner. Modifications can include insertion, deletion or alteration of nucleic acids. The technology operates by biochemical principles generally applicable to every kind of cell. Examples of genome editing technology applications with global significance include human cell-based therapeutics, agriculture, microbial based therapeutics, synthetic biology and biomanufacturing. While genome editing technology is being actively utilized, there is a need for international standardization in terms and definitions for this field, so as to enhance interpretation and communication of concepts, data and results. This document has been developed to provide a unified standard set of terms and definitions that serve the needs of biotechnology stakeholders and act as a reference for genome editing technology. Standards in the field of genome editing products. This document is expected to improve confidence in and clarity of scientific communication, data reporting and data interpretation in the genome editing field. Specific requirements for the application of genome editing technologies in agriculture and food are not included. For specific requirements, users can consult standards developed by appropriate ISO Technical Committees, e.g. ISO/TC 34/SC 16 Horizontal methods for molecular biomarker analysis, or ISO/TC 215 Health informatics.	
C1.1.1.	Development	v

Status	Production
Format	OWL
Contact	Sierra D. Miller, sierra.miller@nist.gov
Categories	Gene Product, Genomic and Proteomic, Molecule

Submissions 🛟 🍰

Version	Released	Uploaded	Downloads
2.1 (Uploaded)	11/23/2020	12/08/2021	OWL
2.0 (Parsed, Metrics, Annotator, Error Indexed)	11/23/2020	12/01/2021	OWL CSV RDF/XML Diff
1.3_relationship_test (Archived)	11/23/2020	02/11/2021	OWL Diff
1.2 (Archived)	11/23/2020	01/21/2021	OWL Diff
1.1 (Archived)	11/23/2020	11/30/2020	OWL Diff

Metrics 😮

Classes	52
Individuals	0
Properties	9
Maximum depth	4
Maximum number of children	9
Average number of children	4
Classes with a single child	2
Classes with more than 25 children	0
Classes with no definition	10

Ontology for Genome Editing Lexicon now in BioPortal

DioPortal Ontologies Search Annotator Recom	nmender Mapping	IS		sdmi	ller 🝷	Sup	pport -
NIST Genome Editing Lexicon			± 0	*		8	2/
Summary Classes Properties Notes Mappings W	Widgets						
Jump to:	Details Visua	ualization Notes (0) Class Mappings (2)					
 Biotechnology – Genome editing – Part 1: Vocabulary Genome editing concepts genome editing genome engineering off-target specificity target Genome editing outcomes edit HDR indel intended edit MMEJ NHEJ unintended edit Genome editing tools General CRISPR specific Cas nuclease target site crRNA gRNA 	Preferred Name Definitions ID definition label note prefLabel subClassOf	gene editing techniques for genome engineering that involve nucleic acid damage, repair mechanisms, replication and/or recombination for incorporating signe or genes http://webprotege.stanford.edu/RC2MgsCJHIZLNI5AOCVuKBH techniques for genome engineering that involve nucleic acid damage, repair mechanisms, replication and/or recombination for incorporating signe or genes gene editing gene editing Genome editing tools gene editing concepts	•				

NIST

NIST Consortia

GENOME IN A BOTTLE (GIAB) CONSORTIUM

Provides authoritative characterization of benchmark human genomes

GENOME EDITING CONSORTIUM

Addresses the measurements and standards needed to increase confidence and lower the risk Addresses the measurements and standards needed for flow cytometry applications

FLOW CYTOMETRY

STANDARDS

CONSORTIUM

POC: Lili Wang

RAPID MICROBIAL TESTING METHODS CONSORTIUM

Addresses the measurements and standards needed to increase confidence and lower the risk

POC: Nancy Lin

POC: Justin Zook

POC: Samantha Maragh

Variability in genome-engineering source materials: consider your starting point

Fire Burn and Cauldron Bubble: What Is in Your Genome Editing Brew?

concept

formulation

editing

recommendation

• report the formulation type (plasmid, RNA, RNP, etc.)

report any co-introduced reagents (HDR donor or fluorescent tracer)

Simona Patange and Samantha Maragh *Biochemistry* DOI: 10.1021/acs.biochem.2c00431

reagent source Reporting of CRISPR reagents in 30 publications Cas9 No М mols g/L grams info No info 9 and units 14 grams aRNA 1 2 mols g/L 1 М 3 **Editing Molecule Type** С Reporting of cell quantity Plasmid (20) No info (13) RNP (7) N cells (11) Cas9 mRNA + gRNA (1) % confluency (3) Cas9 plasmid + gRNA (1) cells/mL (1) No info (1) cells/well (2) cell quantity 1:1.4 RNP ratio (37 nM Cas9 : 50 nM gRNA : 3.7 nM DNA) 1:1.4 RNP ratio, 1/2 concentration (18.5 nM Cas9 : 25nM gRNA : 3.7 nM DNA) HPRT1 EMX1 delivery method Gene Target

1) Quantity of gRNA to Cas9 E

В

D

Efficiency 80

Cleavage

2) Quantity of RNP to cells

3) Quantity of on-target sites per cell

units) assessments

 report the source for each reagent used · from a donating lab: include citation to previous work where available · commercially purchased: vendor and item number · formulated in lab: details on how reagent was generated numerical values • reporting molar amounts is recommended; this could be reported as the starting molarity and the volume used, or the final molarity in the editing formulation • if reporting relative ratios (stoichiometry) of editing biomolecules • report the molecule identity to which the ratio corresponds, for example, 1:1.4 Cas9:gRNA • report numerical value and units of mass, concentration, and/or molarity for at least one component in the formulation so that the other component values can be calculated (see Figure 2D for an example) • if a plasmid is used, sufficient information should be provided to calculate the number of plasmid

molecules in the formulation. This could be reported as follows • molar amount of plasmid, for example, 100 nM plasmid

• mass amount of plasmid with nucleotide length, for example, 1 µg of plasmid, 8505 bp

• mass amount of plasmid with molecular weight (MW), for example, 1 µg of plasmid, 5.26 × 10⁶ g/mol

 mass amount of plasmid with sequence or reference by which a reader can calculate the nucleotide length or MW of the plasmid construct, for example, 1 µg of plasmid, Addgene #71814

• reporting the number of cells that were treated with editing formulation is recommended

• if reporting cell quantity in other units, sufficient information should be provided to obtain the cell number. This could be reported as follows

cell concentration and volume, for example, 200 µL of 1 × 10⁶ cells/mL

• cells per well and plate dimensions, for example, 1 × 10⁵ cells/well in a six-well format (9.6 cm²)

• percent confluency and plate dimensions, for example, 70% confluency in a six-well format (9.6 cm²)

• report the delivery system used (lipid encapsulation, microinjection, electroporation, etc.)

• report the source/vendor, instrument information, and the delivery parameters (include values and

• separate the concepts of delivery, localization, and editing when designing, executing, and interpreting experimental results

 report the values and calculation used when describing a measure of performance (percent editing, delivery efficiency, etc.)

• report on the time point(s) at which measurements were made

Thank You NIST Colleagues!

Natasha Kolmakova

Tara

Eskandari

Sierra Simona Miller Patange

Patty Shevchenko Kiesler

Justin Zook

Nate Olson

Alex Tona

Arlin Stoltzfus Zach Trautt

Hua-Jun He

Ayah

Jamie Almeida

NIST Genome Editing Consortium Members & Other external collaborators

National Institute of **Standards and Technology** U.S. Department of Commerce

Samantha Maragh

samantha@nist.gov

https://www.nist.gov/programs-projects/nist-genome-editing-consortium

Standards Coordinating Body

Dawn Henke Senior Scientific Program Manager

STANDARDS COORDINATING BODY REGENERATIVE MEDICINE November 16th, 2023 Standards workshop

Connecting the regenerative medicine community to standards development

Established in 2016 and launched in January 2017, SCB is an **independent 501(c)(3)** organization

Occupies unique niche within field with **no vested interests in specific scientific, commercial, clinical or policy approaches**

SCB is **not an SDO**, but rather **coordinates** the standards development process

Serves as **communication vehicle** among all stakeholders, including government agencies, critical to the development of standards

SCB Bringing value to patients and the community

MISSION: Coordinate the accelerated advancement and improved awareness of standards and best practices that address the rapidly evolving needs of the global regenerative medicine advanced therapy community

VISION: Improve patient lives through the widespread use of standards that enhance the consistency, availability, efficacy, quality, and safety of regenerative medicine therapies

Benefits of Standards

Standards

Recognition Program

Regulations, Guidances, and Standards

Regulations:

Have the force and effect of law and are usually mandatory, setting out specific requirements that regulated products and organizations must meet. In the United States, regulations are written in the Code of Federal Regulations and published in the Federal Register.

Guidances:

Formal documents issued by a government agency **to clarify** the agency's **thinking on existing laws or regulations** and offer guidelines for how industry **can comply with these regulations**.

Standards:

Voluntary rules, conditions, characteristics, or physical materials that an organization can adopt to make a process safer, more efficient, or better aligned with the practices of other organizations in their industry.

Different standards types include:

Documentary Standards
Standard Reference Material
Standard Reference Data

Regulatory perspective on standards

 Regulatory have clearly expressed the preference for the use of consensus based standards in the approval process when applicable

Voluntary Consensus Standards Recognition Program for Regenerative Medicine Therapies

Guidance for Industry

Recognition program for Standards

- Finalized on Oct 20th
- Guidance outlines a program for the FDA to vet and formally recognize standards that are applicable to regulatory approval of regenerative medicine products
- Standards must apply to regulatory approval for regenerative medicines and be consensus
- Public can submit standards they believe fit criteria for vetting by the FDA
- The list of recognized standards is not available yet but will be shortly
- SCB plans to work with the FDA to develop a webinar in January to go into detail about this program and the standards that are recognized

Standards

Resources

Regenerative medicine standards portal

The <u>SCB Regenerative Medicine Standards Portal</u> offers an easily searchable and filterable database of hundreds of regenerative medicine standards across 25+ organizations.

Custom search by

- Keywords
- Sector
- Functional area
- Standard organization
- + more

Updated at least monthly to ensure accurate information on the entire regenerative medicine standards landscape.

Needed regenerative medicine standards

To provide feedback for the next update, please fill out the needed standards survey.

TAKE THE SURVEY Based on the feedback, the chart below is updated semi-annually to reflect the community's prioritization perspectives. URGENCY AND IMPACT See All > Currently we are collecting 3 \mathbf{O} responses for the High urgency/low impact High urgency/medium impact High urgency/high impact update as part of URGENCY 2 12 the FDA contract. 4 Medium urgency/low impact Medium urgency/medium impact Medium urgency/high impact We will pull responses from 22 2 the survey on Low urgency/low impact Low urgency/medium impact Low urgency/high impact 10/30IMPACT

The needed standards survey can be found at: <u>https://www.standardscoordinatingbody.org/needsurvey</u>

Open Ballots

- ISO/NP 23494-2 Biotechnology Provenance information model for biological material and data Part 2: Common Provenance Model Closing: 30-Nov-23
- 1. ISO 20387:2018 Biotechnology —5 Biobanking General requirements for biobanking Closing: 2-Dec-23
- 1. <u>IG-050 Now Open for Public Comment</u> ICCBBA implementation guide for Col identifier guidance Closing: Nov 20
- 1. Guide for Bioinks Used in Bioprinting WK74668 PDF (1144K)
- ISO/PWI 21085 Biotechnology General requirements for the measurement of ultra-low concentration samples of target nucleic acid sequences Closing: 07-Dec-23

Standards Coordination

SCB: accelerating standards advancement

SCB involvement has significantly reduced the time spent on upstream steps, allowing needs to be addressed more quickly.

Pre-SCB	SCB Projected Dates	End Dates	1. Characterization of Human Cells for Therapeutic Use
10		Dec. 2021	2. Ancillary Materials Used in Cellular Therapy Production (3-Part TS)
2 0	→ ────○	Dec. 2018	3. Requirements for Cell Therapy Manufacturing Equipment
3 00		Jan. 2022	
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		July 2022	4. Rapid Microbial Testing Method Design and Validation Framework
		June 2022	5. Sampling Methods of Tissue Engineered Medical Products for Sterility Assurance
6 0-0-0-0		Feb. 2018	6. General Guidance on Cell Counting Part 1
00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		Aug. 2019	7. General Guidance on Cell Counting Part 2
9		Apr. 2021 May 2023	8. Characterization of Fiber-Based Scaffolds
		June 2020	9. Cell Collection Standards for Cell Therapies
		Nov. 2021	10. Transportation Requirements of Cells for Therapeutic Use
12		Dec. 2023	11. Bioink Printability Test Method
13	0-0-0-00	Sep. 2021	12. Evaluating Pre-existing Immunity to Adeno-Associated Viruses
14	0-0-0-0	Aug. 2022	13. Cryopreservation of Cells (PDA-led project)
15	0-0-0-00	Dec. 2021	14. Bioprinter Hardware
16	0-00-0-0-0	Dec. 2022	15. Ancillary Materials used in Cellular Therapy Production (IS)
17		Sep. 2022	16. Bioprinter Software/Data Governance
18	00-00-00	Feb. 2025	
99	<u> </u>	Dec. 2024	17. ASME Thermal Medicine Tissue Properties
n	0000000000000-	Jan. 2023 Nov. 2020	18. Base Requirements for Digital Platforms for Providers
22		Feb. 2025	19. Viral Vectors (Lenti/AAV) for Gene Therapy
13		Jan. 2023	20. Microphysiological Systems
4	0-(00-(0)	June 2022	21. Base Labeling Requirements for Regenerative Medicine Product:
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026			22. Cell Viability
		1010	23. Tissue Engineering Lexicon
Upstream	Development Ou	utreach	24. Chain of Custody (COC)/Chain of Identity (COI)
			Key: Prioritized for Coordination Feasibility Reports Both
. Identify 2. Prioritize 3. Assess 4. Initiation Needs Standards Feasibility	5. Initial 6. Review/ 7. Final 8. Finalization Drafting Comment Voting	9. Ongoing Outreach and Education	**Availability dates are estimates only. Development of a standard depends on SDO timelines, which can be time intensive and may vary significantly (particularly for reference materials).

FDA/Nexight Standards Development for Regenerative Medicine Therapies Contract

Timeframe: 9/22/2022-9/21/2024 (base year and 1 option year)

Status: Base Year approved and work began

Description: Accelerate and increase community engagement in the development of regenerative medicine standards

Highlights:

- Conduct Workshop on feasibility topics:
 - Methods for the Evaluation of Endogenous T-Cell Therapies
 - Methods for Assessing Gene Therapy Product Activity and Comparability
 - o Feasibility assessments planned for spring 2024
- Update the Needed Standards report Work with experts to coordinate high-priority standards efforts
 - o Needed standards will be updated by the end of this month
- Integrate and maintain the landscape of standards in the standards portal
- Provide ongoing reporting of engagement with experts and experts' engagement with standards

SCB Supported NIST Consortia

NIST RMTM Consortium			Consortium	NIST Flow Cytometry Consortia		
WG01 - Referen Materia First tas design a produce candida reference materia	nce als sk is to and e a ate ce	WG02 - Methods and Validation Provide guidance on the selection and considerations for use of appropriate reference standard materials for the qualification and/or validation of rapid sterility methods for ATMP's	WG03 - Interlaboratory Studies Designing planning activities for Q2 and Q3; starting with a survey to gauge availability of laboratory resources, instrumentation, and materials	 WG1 - ERF Bead Calibration and Instrument Standardization Advance the utility of ERF assigned beads for flow cytometry calibration. Study will compare the intensity values for unknown samples among instruments based on ERF bead calibrations. Reagents, beads, and SOP will be supplied through the Consortium 	 WG2 - Assay Standardization Cell Count and Health (e.g., viability, exhaustion, and apoptosis) is the first test case Study design include various assay control materials to enable comparability of assay results across different cytometer platforms. Study outputs include SOP, standard panels, assay control materials, and reference data 	WG3 Database creation and data analysis

Relevant Standards:

– Search Filters	T cell 😣			Reset all filters
	C Enter keywords C T cell Use double quotes to search fo	r an exact match ("F2233-22")	×	Help with definitions 🥥
		and/or		
SECTOR	FUNCTIONAL AREA	ORGANIZATION	STATUS	TYPE
III All	 All 	All		III All
Cell Therapy	Bioprocessing and Production		In Development	Documentary
Gene Therapy	Analytical and Testing Methodologies		Published / Released	Reference
Tissue Engineering	Product Quality and Characterization		Withdrawn	
Supportive	Logistics and Compliance Criteria		Area of Need	
	Preclinical Studies			
	Clinical Trials			

	REGEN	IERATIVE	MEDICINE
--	-------	----------	----------

Relevant Standards:

REGENERATIVE MEDICINE

Note: This portal searches on standards titles and summary descriptions, not within the full text of the standard itself.

- Search Filters	Gene Therapy			Reset all filters
	Q Enter keywords			Help with definitions 곗
	Use double quotes to search for			
		and/or		
SECTOR	FUNCTIONAL AREA	ORGANIZATION	STATUS	TYPE
O All	III AII	All	▼ ● All	All
Cell Therapy	Bioprocessing and Production		In Development	Documentary
Gene Therapy	Analytical and Testing Methodologies		Published / Released	Reference
Tissue Engineering	Product Quality and Characterization		Withdrawn	
Supportive	Logistics and Compliance Criteria		Area of Need	
	Preclinical Studies			
	Clinical Trials			

acids

_	International Organization for Standardization — ISO	~	ISO 20395:2019	Biotechnology — Requirements for evalua performance of quantification methods for acid target sequences — qPCR and dPCR		Published 2019	Documentary	
	Applicable Sector(s)	Gene Therapy						
	Functional Area(s)	Analytical and Tes	sting Methodologies	Product Quality and Characterization				
	Description			ν, and reproducibility of targeted nucleic acid qu rocesses, supporting the regulatory-driven requ				
	Additional Keywords	quantification of DNA, d technologies	leoxyribonucleic acid, F	RNA, ribonucleic acid, target sequences, digital,	dPCR, quantitativ	e real-time PCR, qPCF	amplification	
	Availability	https://www.iso.org/sta	ndard/67893.html					
	Curated ANSI Package(s)	Tissue Engineering Stan	dards Addressing Analy	ytical and Testing Methodologies Package				
					Feed	lback or updates on tl	his item 📕	Export

ISO Cell Characterization

International — Organization for Standardization	— ISO	ISO 23033:2021	Biotechnology — Analytical methods — General requirements and considerations for the testing and characterization of cellular therapeutic products	Published 2021	Documentary
Applicable Sector	(s) of Cell Therapy				
Functional Area	(s) 🔒 Analytical and Te	sting Methodologies			
Descripti	characteristics and com therapeutic products in This document also pro analytical methods tha establish critical quality Aspects of this docume	nmon cell measurement m itended for human use. wides considerations for t t are fit-for purpose and co y attributes (CQAs) for a ce	zation of human cells for therapeutic applications. It also p nethods. This document defines terms and provides genera he characterization and testing of cellular therapeutic proc onsiderations for setting specifications for the analytical m llular therapeutic product. ng materials (including those for tissue-engineered produc n transplantation.	l requirements for t lucts, including appi ethods. Such consid	he testing of cellular roaches to select and design lerations can be used to
Additional Keywor	ds Biotechnology, analytic	al methods, testing and cl	haracterization of cellular therapeutic products		
Updates and Calls to Acti	on This standard has been	published (<u>SCB-coordinat</u>	ted project).		
Availabil	ity <u>https://www.iso.org/sta</u>	andard/74367.html			
			Ģ	Feedback or update	s on this item 🛛 📕 Export

ISO Optical Measurements

ISO 24421:2023 Biotechnology Minimum requirements for optical signal measurements in photometric methods for biological samples

https://www.iso.org/standard/78742.html?browse=tc

1 Scope

This document specifies minimum requirements to support accurate measurement of optical signals in photometric methods used for qualitative or quantitative characterization of biological samples.

This document is applicable to optical signals that are generated, for example, by bioluminescence, chemiluminescence and fluorescence, and optical signals that are detected as changes of light due to absorption.

This document addresses the verification of optical signal measurement instruments used in photometric methods for measurement of biological samples including considerations for the use of optical references.

This document does not provide sector- or application-specific performance criteria for the workflow of measuring biological samples. When applicable, users can also consult existing sector- or application- specific standards, or both.

ASTM quantitative fluorescence measurements

-	ASTM International	~	ASTM F3294-18		for Performing Quantitative Fluorescence In lorescence Microscopy	itensity Measurements in Cell-based Assays with	Published 2018	Documentary
	Applicable Sector(s)	Scell Therapy	Vissue Engineering					
	Functional Area(s)	§ Bioprocessing and	d Production 👌 Analytical and	Testing Methodologies	Product Quality and Characterization			
	Description	fluorescence protein rep epifluorescence microsc	porter molecules. The general proce	dure for quantifying relative elative intensity quantificati	intensities is to acquire digital images, then	tributes such as the abundance of probe molecules (to perform image analysis to segment objects and co sources of bias that are often present in fluorescent n	mpute intensities. The ra	w digital images acquired by
		region of interest (ROI) a • Characterization of cell • Measuring the area of p • Quantifying the spread		ation procedures are essenti ne abundance of DNA in indi sits in cell cultures (ASTM F2	al to the measurement process to minimize vidual cells	n or between cells. In instances where Random Illumi biased results. Example use cases where this guidanc	영양 영양 이 이 방송은 것 같아. 것 같아?	
		The quantitation of a so This guidance documen biologists who often use on sound experimental	secondary fluorescent marker that p nt was developed to facilitate the col e fluorescent staining techniques to design and appropriate operation o	rovides information related lection of microscopy image visualize components of a c f the digital array detector, s	es with an epifluorescence microscope allow ell-based experimental system. Quantitative uch as a charge coupled device (CCD) or a sc	ity, or biochemical features of a colony or cell (ASTM ing quantitative fluorescence measurements to be ex comparison of the intensity data available in these in ientific complementary metal oxide semiconductor (eld correction, background correction, benchmarking	tracted from the images. nages is only possible if th sCMOS) or similar camera	ne images are quantitative based The document considers issues
		single-color fluorescenc	ce microscopy imaging or multi-colo	r imaging where the measur		rescence microscopy systems such as fluorescence or This document also discusses metrology issues relat imp configurations.		행동 것 같아요. 김 양상 이상에 잘 하는 것 같아요. 것 같아요. 이상 있는 것 같아요. 이상 있는 것 같아요. 이상 것 같아요. 이상 것 같아요. 이상 있는 것 같아요. 이상 것 같아요. 이상 것 같아요. 이상 있는 이상 것 같아요. 이상 있는 이상 있 이 이 이 이 있는 이상 있는 이상 있는 이 이 이상 있는 이 이 이상 있는 이상 있는
	Additional Keywords	Chemical Analysis, Imag	ging Technology, Microscopy, Optica	l Properties, Semiconducto	Devices			
	Availability	https://www.astm.org/S	Standards/F3294.htm					
	Curated ANSI Package(s)	Cell Therapy Standards	ndards Addressing Product Quality a Addressing Product Quality And Cha ndards Addressing Analytical and Te	aracterization Package	3			
							Feedback or upd	lates on this item 🛛 🔎 Export

ASTM Osteoblast differentiation

—	ASTM International	~	ASTM F3106-22	Standard Guide for in vitro Osteoblast Differentiation Assays	Published 2022	Documentary
	Applicable Sector(s)	လို Cell Therapy	Vissue Engineering			
	Functional Area(s)	Product Quality a	nd Characterization			
	Description	progenitor stem cells fr	om various human or anim	nditions used for in vitro osteoblast differentiation nal sources. These sources include mixed tissue-der anipulated through culture expansion, processing,	ived connective tissue pro	genitor populations and cell
	Additional Keywords	Biological Test, Biomate Osteoblasts, Progenitor		, Cell Culture, Cells, Cultivation, Forensic Anthropol	ogy, In Vitro Bioassay, Mes	enchymal Stem Cells,
	Availability	https://www.astm.org/	Standards/F3106.htm			
Cu	rated ANSI Package(s)		Local de la companya	<u>: Quality and Characterization Package</u> ty And Characterization Package		
					Feedback or update	es on this item 📕 Export

Standards projects: Cell Therapy & crosscutting

• ISO Ancillary Materials: Published

ISO certificate of analysis: currently drafting. Submitting initial comment period in early Nov

- **Framework for cryopreservation:** currently drafting. Submitting initial comment period in early Nov
- ISO RMTM Framework: Published

- **ISO Cell Viability:** Current draft is available for review
- ISO Minimum Requirements for Cellular Morphological Analysis Image capture, image processing, and morphometry. At DIS stage.
- ISO cell line authentication: Published

Cell Therapy* Sector

Assess potential standards that could improve the safety, quality, and efficacy of cell therapy products and enable more efficient product development processes, such as by establishing common methods to measure cells' functional response to their environment.

* Cell therapy products use living cells as a means of replacing or repairing damaged cells to treat disease.

Standards projects: Gene Therapy

- **Pre-Existing Immunity to AAV**: Actively drafting. Preparing for NP ballot.
- Validation of database used for nucleotide sequence evaluation: At DIS stage
- ISO Nucleic Acid Synthesis Part 2: General definitions and requirements for the production and quality control of synthesized gene fragment, gene, and genomes: Final stages before publication
 - **ISO Massively parallel sequencing** Part 1: Nucleic acid and library preparation. Published
- ISO Gene delivery systems Part 1, 2, and 3 Passed NP Ballot, Looking for SMEs for comment

Gene Therapy* Sector

Evaluate the potential for standards that can help improve the safety and efficacy of gene therapy treatments, such as by improving screening for pre-existing immunity to common viral vectors.

* Gene therapy involves the use of a vector, such as an inactivated virus, to insert a new copy of a gene or relevant nucleotide sequence into a patient's cells to treat a genetic health condition.

Opportunities to Impact Standards Development and Implementation

ISO/TC 276 Biotechnology Meetings

WG2 Biobanking: Nov 13th, Nov 14th, Nov 15th, Nov 16th

WG 3 Analytical Methods: Dec 6th, Dec 7th, Dec 8th

WG 4 Bioprocessing: Nov 28th, Dec 4th, Dec 5th

WG 5 Data processing and integration: Dec 4th, Dec 5th, Dec 6th, Dec 7th, Dec 8th

If interested in joining a working group, please contact Dawn at <u>DHenke@regenmedscb.org</u>.

Call to Action

- *ISO Cell Viability Project
- ASTM WK70143, New Guide for Sampling Methods of Tissue Engineered Medical Products (TEMPs) for Sterility Assurance
- Cryopreservation Framework
- Containers for Cryopreservation
- Certificate of Analysis for Ancillary Material

If interested in joining a working group, please contact Dawn at <u>DHenke@regenmedscb.org</u>.

Education Updates

Workforce Development Course Update

Pilot training program for standards:

Began to design and implement a pilot training program (with ARMI | BioFab USA) to help manufacturers to avoid/minimize many of the common front-end issues of the manufacturing process.

ISO Cell Counting Part 1&2: We've recently signed an MOU for training partnership with ISCT: The SCB certificate course will be offered through ISCT's LMS. The course should be available online through ISCT very soon.

ISO Ancillary Materials: we are still recruiting experts to help with the creation of course content.

If interested in serving as a subject matter expert or to contribute case studies, please contact Katie at <u>CZander@regenmedscb.org</u>.

Focus Areas

Since our inception in 2017, SCB has accelerated the advancement of 34+ standards. But we need additional community support to respond to the interrelated challenges facing the regenerative medicine field. To address this need we have developed SCB Focus Areas.

The first three Focus Areas are:

- 1. Standards Implementation Education and Workforce Development
- 2. Data Management
- 3. Cryopreservation

Donor Benefits Include:

- SCB's formal recognition of your contribution in meetings and media
- A seat on the Focus Area's Steering Committee
- Discounted course registration for your employees

Focus Areas

Standards Implementation Education and Workforce Development

KEY CHALLENGE: Standards can only benefit the community

if there is broad understanding of how to implement them to meet regulatory expectations.

FOCUS AREA SOLUTIONS:

Develop courses on how to use specific regenerative medicine standards to demonstrate regulatory compliance and improve the efficiency and repeatability of internal processes.

Data Management

KEY CHALLENGE:

Variability in data management practices and manufacturer requirements are common pain points for collection centers and can even overburden staff to the point of limiting their capacity to support clinical trials of potentially lifesaving therapies.

FOCUS AREA SOLUTIONS:

Identify common data needs and approaches to streamline data management practices.

If interested in learning more about SCB Focus Areas, please contact Justin at JBarch@regenmedscb.org.

Stay up to date on standards

Follow us on social media to stay up to date on news surrounding regenerative medicine standards, including webinars, FDA guidance documents, NIST consortium opportunities, open ballots, and new working groups.

Linkedin:<u>https://www.linkedin.com/company/standards-coordinating-body</u>

Twitter: <u>https://twitter.com/SCBRegenMed</u>

FOR MORE INFORMATION VISIT www.standardscoordinatingbody.org

OR CONTACT <u>dhenke@regenmedscb.org</u>

Breakout Groups (will be opening these breakout groups to virtual participation)

Identification and Prioritization of Needed Standards

One of the main goals of SCB is to identify and prioritize needed standards to determine where resources should be allocated

SCB focuses on determining:

- What standards will be most beneficial for the community
- What standards will have the most impact
- What standards will help the therapy development process and get therapies to patients faster
- What standards will make therapies safer and more effective

Feasibility Assessments

The next stage is assessing feasibility of developing identified standards

SCB organizes feasibility assessment meetings for a selection of high-priority standards identified by the community in the Regenerative Medicine Standards Portal. These meetings bring together regenerative medicine stakeholders with diverse expertise and viewpoints to consider feasibility factors such as:

- **Technical feasibility:** Whether an adequate technical and scientific foundation exists for constructing the standard
- **Implementation feasibility:** Factors that influence an individual firm's adoption of the standard such as incurred costs; the standard's compatibility with existing equipment, materials, and technology; and required in-house expertise
- **Expert availability:** Level of interest from technical experts in the field who can advance the standard

The results **inform SCB's standards priorities and often spur the creation of new working groups** for any standards or pre-standards outputs selected to move forward.

Breakout Groups

Today we want to use two separate breakout sessions to identify and prioritize needed standards for

A) Assessing Gene Therapy Product Activity

B) Assessing T-Cell and Other Cell Therapy Product Activity

We are looking to determine what standards need to be created to move the regenerative medicine field forward.

Breakout Group Goals

Day1:

Identify and prioritize specific standards needs and topics that are ripe for standardization for cell and gene therapy activity

Day 2:

Define more of the specifics of the standard topics identified on Day 1 and their feasibility

Focus Questions

What assays or related processes, if standardized, would help address current challenges? Standards can include specific protocols about how to conduct a process (e.g., a technical specification or validation protocol) as well as less prescriptive guides that aid in decision making.

Which two topics would have the greatest positive impact on the field if standardized in the near term? (voting exercise)

For the top 2 prioritized topics:

- What components of the assay or related process need standardization (e.g., test selection, measurement methods, interpreting results, validation)?
- What key questions should be answered by a standard on this topic?
- Do you anticipate any barriers to standardizing these assays (e.g., lack of scientific consensus, difficulty or expense of implementation, potential resistance from the community)?

Day 1 Breakout Instructions

Breakout Instructions

- You will break out into two groups to participate in a facilitated discussion of standards needs.
- Please bring your laptops, as this will make it easier to submit input via Xleap
- Virtual participants are welcome to join the breakout sessions and submit comments via Webex chat or XLeap; however, the focus will be on the in-person meeting

Gene Therapy Breakout Group

Facilitator: Dawn Henke

Room: Spaulding

Meeting Link: https://uspevents.webex.com/uspevents/ j.php?MTID=md10004a2621f9cb0e66ea28fa68fe32b

XLeap Link: https://39049718.xleap.net/gene

T-Cell and Other Cell Therapies Breakout Group

Facilitator: Sarah Lichtner

Room: Bache & Wood

Meeting Link: https://uspevents.webex.com/uspevents/j.php?MTID=mcc9a 0eabb2b516b90c15526242a2972f

XLeap Link: https://00689413.xleap.net/cell

Day 2 Breakout Instructions

Breakout Instructions

- You will break out into two groups to participate in a facilitated discussion of standards needs.
- Please bring your laptops, as this will make it easier to submit input via Xleap
- Virtual participants are welcome to join the breakout sessions and submit comments via Webex chat or XLeap; however, the focus will be on the in-person meeting

Gene Therapy Breakout Group

Facilitator: Dawn Henke

Room: Spaulding

Meeting Link: https://uspevents.webex.com/uspevents/j.php?MTID=m f5650bce7f8d2321b56240803733a9ff

XLeap Link: https://39049718.xleap.net/gene

T-Cell and Other Cell Therapies Breakout Group

Facilitator: Sarah Lichtner

Room: Bache & Wood

Meeting Link: https://uspevents.webex.com/uspevents/j.php?MTID=m 8844776ad851f3432b905f5a6dce21b8

XLeap Link: https://00689413.xleap.net/cell

Gene Therapy Breakout

XLeap

- Click on the navigator icon in the upper left to view the open discussion spaces.
- Click on the discussion title to enter the space.
- Type in and post your idea in the "Your idea box" at the bottom of the screen.
- Click on the speech bubble icon on the right of an idea to open the comment panel.
- Type in and post your comment in the "Your comment" box.

Please join XLeap using a laptop, tablet, or smart phone using the following link:

+‡+ Navigator	4	

	Your idea here	000000
100	Your idea here	

T-Cell Therapy Breakout

XLeap

- Click on the navigator icon in the upper left to view the open discussion spaces.
- Click on the discussion title to enter the space.
- 3 Type in and post your idea in the "Your idea box" at the bottom of the screen.
- Click on the speech bubble icon on the right of an idea to open the comment panel.
- Type in and post your comment in the "Your comment" box.

Please join XLeap using a laptop, tablet, or smart phone using the following link:

+‡+ Navigator	<	

13	Your idea here	000000

NAVIGATING REGULATORY MILESTONES THROUGHOUT DEVELOPMENT

NOVEMBER 17, 2023

Workshop for the Identification and Standardization of Methods for Assessing Gene Therapy Product Activity and Comparability and the Evaluation of T-Cell Therapies

Patrick Bedford weCANtranslate Network

Analytical DevelopmentQualification Validation Application

Discovery

Spinout

Analytical DevelopmentQualification Validation Application

Analytical DevelopmentQualification Validation Application

Enabling a Healthier World

Navigating the milestones in developing a commercially-viable CGT Product

A CDMO perspective on the analytical methods for T-cell products

Krishna Panchalingam | Associate Director, CGT Technical Operations/Development Services

SCB Gene Therapy Product & Comparability & The Evaluation of T-Cells Workshop November 17, 2023

Additional Information and Disclaimer

Lonza Group Ltd is headquartered in Basel, Switzerland and listed on the SIX Swiss Exchange. It has a secondary listing on the Singapore Exchange Securities Trading Limited ("SGX-ST"). Lonza Group Ltd is not subject to the SGX-ST's continuing listing requirements but remains subject to Rules 217 and 751 of the SGX-ST Listing Manual.

Forward-looking statements contained herein are qualified in their entirety as there are certain factors that could cause results to differ materially from those anticipated. Any statements contained herein that are not statements of historical fact (including statements containing the words "outlook," "guidance," "believes," "plans," "anticipates," "expects," "estimates" and similar expressions) should be considered to be forward-looking statements. Investors are cautioned that all forward-looking statements involve risk and uncertainty.

There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forwardlooking statements, including the timing and strength of new product offerings; pricing strategies of competitors; the company's ability to continue to receive adequate products from its vendors on acceptable terms, or at all, and to continue to obtain sufficient financing to meet its liquidity needs; difficulty maintaining relationships with employees, customers and other business partners; and changes in the political, social and regulatory framework in which the company operates, or in economic or technological trends or conditions, including currency fluctuations, inflation and consumer confidence, on a global, regional or national basis.

In particular, the assumptions underlying the section "Looking to the Future" herein may not prove to be correct. The statements in the section "Looking to the Future" constitute forward-looking statements and are not guarantees of future financial performance.

Lonza's actual results of operations could deviate materially from those set forth in the section "Looking to the Future" as a result of the factors described above or other factors. Investors should not place undue reliance on the statements in the section "Looking to the Future". Except as otherwise required by law, Lonza disclaims any intention or obligation to update any forward-looking statements as a result of developments subsequent to the publication of this presentation.

Cell and Gene Therapies Come With Specific Challenges

Compared to traditional biologics

Key challenges: Analytics

The Path To Commercial Manufacturing Begins With a Well-defined Process

For Consistent Manufacturing of High-quality Product

Lonza

Cell & Gene

In-Process Controls

For monitoring the process

- Define control and action limits around each unit operation to ensure adequate control of the manufacturing process
- Some of the suggested process controls for CAR-T cell therapies
- CD3, CD4 and CD8% of the starting material (Apheresis)
- Post Selection T cell recovery
- Post selection cell purity (CD3%) and phenotype (Memory subsets)
- Post-selection Impurities (RBC, Platelets, tumor cells)
- Transduction or Transfection or Transposition efficiency
- Monitoring for Memory Phenotype, activation State and exhaustion markers during expansion
- Cell count and cell viability throughout culture and downstream processing
- Process residual clearance

Assay Release				
Assay	Objective	Method	Evaluation Criteria	Category
Cell Count & Viability	Dose	NC-200	% viability >70; minimum cell number /vial or Cell concentration / mL	Release Assay
Phenotype	Identity & Purity	Flow cytometry	CD3%, CD4%, CD8%, CAR%	Release assay
Phenotype	Cellular Impurities	Flow cytometry	CD19/CD20, CD56, CD14, CD15, Tumor cells	Release assay or FIO
Copy Number	Gene Modification	qPCR/ddPCR	No of copies of corrected gene	Release assay
Knock-out %	Gene Modification	Flow cytometry	% TCR-alpha beta negative cells	Release assay
Knock-in %	Gene Modification	ddPCR/ Targeted Sequencing	% of gene modified cells in product	Release assay
Mycoplasma Testing	Safety	MycoPCR or USP	Negative	Release assay
Sterility Testing	Safety	USP or BacT	Negative	Release assay
Endotoxin Testing	Safety	USP	Standard QC release (<0.5 EU/ml)	Release assay
Visual Inspection	Safety	USP	No visible particles	Release assay
Potency Assay	Potency	Various	Indication specific potency (cell activation, cytotoxicity and cytokine secretion)	Release assay
Characterization Assa	<u>y</u> s			
Process Residuals	Residual clearance	Various	Demonstrate clearance of process related impurities such as Serum, Albumin, cytokines, RNPs, ssDNA	FIO*

Additional Characterization Assays for Allogenic CAR -T Gene Editing

Assay	Objective	Method	Evaluation criteria	Category
sgRNA design	Maximizing specificity and minimizing off- target cleavage	In-silico design	Evaluation of candidate sgRNAs	Development testing
On-Target Cleavage Detection	Confirm efficient and specific cleavage at desired site	ddPCR and endonuclease digestion	% of knock-out in pooled T cell post transfection	Development testing
On-Target Clone Validation	Confirm efficient and specific cleavage at desired site	Sanger Seq/ NGS	% of knock-out in T cell single clones post transfection	Development testing
Off-Target Validation	Safety	In-silico prediction/ Targeted Seq/ NGS	Zero off-target mutagenesis	Development testing

Lonza support across the Analytical Lifecycle

Bioassay Services manages the maturation of assays throughout the product lifecycle

• Lonza's CGT Analytical Team has the experience and expertise to fulfill all analytical needs across the analytical lifecycle.

Lonza | Cell & Gene Technologies | ©2023 Lonza. All rights reserved

Assay transfer from client and feasibility studies

- - Gap assessment of client protocol according to each type of assays per ICHQ2R1 and USP1225

Assay optimization:

- Develop a robust, locked down method with suitable controls
- Performance verification to define the criteria including assay range e.g. assay precision, accuracy, limit of detection

Assay qualification

Early phase activity to generate documented evidence that the method consistently delivers correct results through an evaluation of the performance characteristics of the test method relative to the intended purpose or expected performance

Assay validation

Late clinical phase activity used to \rightarrow confirm the performance of tests using GMP material based on preset acceptance criteria

Development of in process testing and control assays, and stability testing **Product characterization**

Product characterization

Seamless transition to QC for GMP testing

 \geq

What is the analytical pathway?

Behind every successful commercial launch is detailed planning and preparation

Cell & Gene Technologies

• Off-the-shelf Bioassay Library

Lonza | Cell & Gene Technologies | ©2023 Lonza. All rights reserved

Timeline reduction with off-the shelf assays

Current Standard

Pla

D

Feasibility/ Development

Optimization

Individual assays are Optimized and Qualified per client/product, often recreating previous work on similar products

Lonza develops *prior to* contract signature

	The Martine Martine		
atform assay evelopment		Optimization	Qualification
	(if needed)		

A representative product can be **Optimized and Qualified, eliminating the need to repeat** these activities for each similar product in the future

Product-specific Qualification using Platform Assays

Implementation of Qualified Assays

~2-3 months after contract signature

Feasibility – Apply to new product ____ Qualification – Sample Matrix Verification

Qualification

~0-2 months after contract signature

Implementation & Verification study

Minimal experiments to verify the validity that the Platform Optimization/ Qualification applies to the new product

Focusing on implementation / minimal verification studies to ensure there is no variability or product / process impact

0

Assay families covered*

How will it work?

As part of feasibility gap assessment, we recommend pre-developed assays based on your therapy

and

We will **test and verify** the assays for your therapy and **ensure that they meet your critical quality attributes**

Meet Your Timelines

... and Map Out the Future Reduce timelines by up to 2-6 months*

De-risk your clinical development Have a clear path forward

•

Utilize pre-developed catalog of assays

That still fits to your specific product

Ensure a smooth transfer of analytical methods into GMP manufacturing Meet the critical quality attributes (CQAs) of your product

> Leverage Lonza's 20+ years of technical expertise in CGT

Navigate regulatory pathway with ease

Clear contractual terms

Tech transfer package and documentation defined

Flexibility

*If applicable, to be verified based on specific customer process

Assay Automation

Solving the Assay Pain Points in Commercial Cell & Gene Therapeutic Product Manufacturing

Lean to Automated Sample Preparation

Liquid Handling Systems

Implementing consistency for complex and/or time-consuming manualbased procedures

- Reduce analyst variation and potential deviations/errors
- Increase consistency of assay performance

BD FACS Lyric

BD FACS Duet

Tecan

Classification

ELISA Automation Overview

Tecan (Freedom EVO) at Lonza Houston

Automation advantages

- Relieve operators from repetitive tasks: in-process and routine testing
- Robotic arms for pipetting and labware movement
- Optimize assay precision, accuracy and consistency
- Meet throughput, cost saving and productivity targets
- Automation extension for other assays
 - ELISA dilution preparation
 - qPCR and ddPCR sample preparation
 - TCID50 assay sample dilution
 - NGS sample preparation Automated library preparation, quality control and pooling
 - Colony picking & plating

Shortened Timelines, Faster Turnarounds Leveraging our standard New Product Introduction & Lifecycle Process (1/2)

() New Product Introduction	De-risked product introduction	Standardization across 6 key workstreams	Q Well-defined processes turned into manufacturing successes
	Robust fit assessment to ensure alignment with Lonza requirements	1 Raw materials	1 Clearly defined deliverables at each stage gate with checklists
	2 Standard requirements to identify issues early on	 2 Sterility assurance 3 Analytics 	2 Standard tech transfers across the globe
A New Paradigm	3 Reduced compliance risk	4 Manufacturing Processes	 Support from capability assessment to commercial production
	4 Avoidance of delays and rework	5 Facilities & equipment	
		6 Tissue acquisition	

Shortened Timelines, Faster Turnarounds Leveraging our standard New Product Introduction & Lifecycle Process (2/2)

Y

- Block Flow Diagram for the process incl. relevant parameters
- ¢

Sterility Assurance

- Pre-Technology Transfer Sterility Assurance Assessment Report
- Microbiological Contamination Risk Assessment

Facility & Equipment

- **Engineering & Commissioning**
- Equipment and Facility Validation, Calibration and Maintenance

- **Final Product Testing**
- Sampling Plans
- Master Validation Plan

Raw Materials

- Raw Material List
- Material Testing Requirements & Specifications
- Supplier Qualification

Tissue Acquisition

 Donor Program creation and maintenance; Starting Material (cells/tissue) Assessment; Chain of Custody; Chain of Identity

Established Leading Partner for Innovators in the Cell & Gene Space

Cell & Gene Technologies value proposition

Lonza

Cell & Gene

Thank You!

a branca 2 S	- references					
				i		
					12	

Enabling a Healthier World

Extra Slides

Established Commercial Manufacturing

Across a global network

PAI approvals in Feb 2021, Aug 2022, Sep 2022

 \bigotimes

Certified CGT commercial site, manufacturing both viral vectors and cell therapy for 3 commercial CGT products

Capacity expansion:

- 32,500 square feet of manufacturing space expansion
- >200 clinical and commercial batches annually
- Additional shell space for rapid and flexible modular expansion

20+ years of experience in viral vector manufacturing Over 8 years of extensive experience in LVV production (over 60 GMP batches) R&D Innovation & Process Development expertise to support process industrialization and de-risked manufacturing

Off-the-shelf, predeveloped assay library Global regulatory support through entire program life cycle

Established Commercial Manufacturing

Across a global network

LONZO

Gene therapy comparability challenges and practices – an industry perspective

David Litwack, PhD

Disclaimer

- I am an employee of Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly
- Views and opinions expressed are my own

Special challenges posed by new technologies

- Technology constantly improving
- Many gaps in scientific knowledge
- No uniform practices (assays, manufacturing, etc.)
- Effects of product quality on safety and efficacy not well understood
 - Too few patients in any given gene therapy trial

Gene therapy manufacturing challenges

- Complex biology
- Inconsistent manufacturing
- Mixed results with both HEK and baculovirus platforms
- Manufacturing changes during product development
- Limited material for characterization, comparability
- No standard cutoff for CQAs
- Lack of standard methods for measuring CQAs
- Assays are not standardized
 - Differences in sensitivity, precision, etc.
 - No ground truth
- High-priority examples
 - Partial capsids
 - Aggregates
 Avholly Owned Subsidiary
 of Eli Lilly and Company

Quality Attribute Category	Quality Attribute
Safety	Bioburden
	Endotoxin
	Sterility
Content/	Appearance/particulates
strength	Н
	Osmolality
	Vector genome titer
	Potency (protein expression)
	Potency/infectious genome titer
Identity	Capsid identity
	Genome identity
Process impurities	Residual cell culture media components
	Residual host cell protein
	Residual plasmid DNA
	Residual host cell DNA
	Residual transfection reagent
	Residual chromatography ligand
	Replication-competent AAV
Purity	Capsid protein purity
	Capsid protein ratio
	% full capsids
	Total capsids
	Aggregates/subvisible particles

Project A-Gene

Srivastava (2021)

HEK293 vs Sf9/baculovirus

How to Show Comparability ?

Products need be "*highly similar*" with "*no adverse impact*" in:

Quality: AAV Particle distribution

Analytical Ultracentrifugation

Process	Batch	Empty (%)	Partial (%)	Full (%)
HEK	Lot 1	3.9	47.7	39.9
	Lot 2	12.5	38.6	34.4
	Lot 1	6.6	3.0	76.5
SF9	Lot 2	8.6	3.5	80.9
519	Lot 3	5.5	5.2	82.8
	Lot 4	3.1	9.2	84.3

New platform: higher % Full, fewer Partials and Empty Capsids

"No adverse impact" on quality

Quality: DNA Residuals

"No adverse impact" on quality

Efficacy: Comparable efficacy

In vitro Analytical Potency Assay

Platform	Batch	Relative Potency
НЕК293	Lot 1	153%
1112112/5	Lot 2	143%
	Lot 3	142%
Sf9	Lot 4	93%
	Lot 5	113%

Assay variability 30% CV

No statistically difference between lots, highly similar in-vivo efficacy

Comparable efficacy

In vivo Cerebral Cortex GCase activity in the CBE Mouse Model

Safety: Similar Safety

CMC Analytics

Test	PR001A (v1.0)	PR001A (v2.0)
Sterility	No Growth	No Growth
Endotoxin	$\leq 0.5 \text{ EU/mL}$	\leq 0.5 EU/mL
Mycoplasma	Not detected	Not Detected
In- vitro Adventitious virus	Not Detected	Not Detected
In-vivo Viral contaminants	NT	Not Detected
rcAAV (Replicative competent AAV)	Not Detected	Not Detected

Toxicology Study in NHPs

"<u>No in-life or clinical or anatomic pathology</u> findings related to the gene product were observed. *Therefore, the dose levels were <u>well-tolerated</u> by male* and female monkeys dosed via intracisternal injection to the cisterna magna."

Capsid proteins (V1, V2, V3): no change in

Partial capsids

- Many techniques do not distinguish partial capsids
- TEM seemingly overestimates the number of empty species and underestimates the proportion of partial species compared to AUC

Aggregation Testing for AAVs

A combination of analytical techniques is required for assessing particle composition

S. No.	Technique	Detection of partial/intermediate species
1	Genomic Titer to Capsid Titer	X
2	Analytical Ultracentrifugation	
3	CryoTEM	
4	SEC-MALS	X
5	Anion Exchange Chromatography	×
6	Mass Photometry	
7	Charge Detection Mass Spectrometry	

Additional requirements:

How can standards help?

Acknowledgements

- Jorge Haller
- Garret Daniels
- Shreya Ahuja
- Prevail Therapeutics Analytical Development Team
- Prevail Therapeutics Process Development Team

